Skip to content

Handling both pose estimation and object tracking with tensorrt together

Notifications You must be signed in to change notification settings

lbq779660843/yolov8_pose-track_tensorrt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOv8 + Pose estimation+ ByteTracker

This project integrates YOLOv8 (Object detection and pose estimation)and ByteTracker for real-time, TensorRT-optimized object detection and tracking, extending the existing TensorRT-YOLOv8 implementation.

Usage CPP(TensorRT):

from ultralytics import YOLO
# Load a model
model = YOLO("yolov8s-pose.pt")  # load an official model
# Export the model
model.export(format="onnx")
  • 3.Convert model to trt
trtexec.exe --onnx=yolov8s-pose.onnx --saveEngine=yolov8s-pose.engine
  • 4.Inference
cd build/release
yolov8-pose-bytetrack-trt.exe yolov8s-pose.engine test.mp4 # the video path

What is next?

  • Python(TensorRT)

Setup:Build project by using the following commands or cmake-gui(Windows).

CPP:

  1. Windows:
mkdir build
cd build
cmake ..
cmake --build . --config Release
  1. Linux(not tested):
mkdir build
cd build && mkdir out_dir
cmake ..
make

Requirement

  • TensorRT
  • CUDA, CudaNN
  • Eigen 3.3
  • C++ compiler with C++17 or higher support
  • CMake 3.14 or higher
  • OpenCV

Acknowledgement

This project is based on the following awesome projects:

About

Handling both pose estimation and object tracking with tensorrt together

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published