-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit a8e3ecc
Showing
11 changed files
with
305 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
__pycache__/ | ||
train.py |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
import torch | ||
from PIL import Image | ||
from torchvision import transforms | ||
from model import CheckerboardAutogressive | ||
|
||
torch.backends.cudnn.deterministic = True | ||
|
||
if __name__ == '__main__': | ||
device = 'cuda' if torch.cuda.is_available() else 'cpu' | ||
checkpoint = torch.load('checkpoint.pth.tar', map_location=device) | ||
|
||
net = CheckerboardAutogressive().to(device).eval() | ||
net.load_state_dict(checkpoint["state_dict"]) | ||
|
||
img = Image.open('./images/kodim01.png').convert('RGB') | ||
x = transforms.ToTensor()(img).unsqueeze(0).to(device) | ||
|
||
with torch.no_grad(): | ||
# codec | ||
out = net.compress(x) | ||
rec = net.decompress(out['strings'], out['shape']) | ||
rec = transforms.ToPILImage()(rec['x_hat'].squeeze().cpu()) | ||
rec.save('./images/codec.png', format="PNG") | ||
|
||
# inference | ||
out = net(x) | ||
rec = out['x_hat'].clamp(0, 1) | ||
rec = transforms.ToPILImage()(rec.squeeze().cpu()) | ||
rec.save('./images/infer.png', format="PNG") | ||
|
||
print('saved in ./images') |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .layers import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
from typing import Any | ||
|
||
import torch | ||
import torch.nn as nn | ||
|
||
from torch import Tensor | ||
|
||
|
||
class CheckerboardMaskedConv2d(nn.Conv2d): | ||
""" | ||
if kernel_size == (5, 5) | ||
then mask: | ||
[[0., 1., 0., 1., 0.], | ||
[1., 0., 1., 0., 1.], | ||
[0., 1., 0., 1., 0.], | ||
[1., 0., 1., 0., 1.], | ||
[0., 1., 0., 1., 0.]] | ||
0: non-anchor | ||
1: anchor | ||
""" | ||
def __init__(self, *args: Any, **kwargs: Any): | ||
super().__init__(*args, **kwargs) | ||
|
||
self.register_buffer("mask", torch.zeros_like(self.weight.data)) | ||
|
||
self.mask[:, :, 0::2, 1::2] = 1 | ||
self.mask[:, :, 1::2, 0::2] = 1 | ||
|
||
def forward(self, x: Tensor) -> Tensor: | ||
# TODO: weight assigment is not supported by torchscript | ||
self.weight.data *= self.mask | ||
return super().forward(x) | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
# notice that the bias is 'True' in practice | ||
ckbd = CheckerboardMaskedConv2d(3, 3, kernel_size=5, padding=2, stride=1, bias=True) | ||
x = torch.rand((1, 3, 8, 8)) | ||
|
||
print(ckbd(x)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
import torch | ||
|
||
from compressai.models.google import JointAutoregressiveHierarchicalPriors | ||
from layers import CheckerboardMaskedConv2d | ||
from modules import Demultiplexer, Multiplexer | ||
|
||
class CheckerboardAutogressive(JointAutoregressiveHierarchicalPriors): | ||
def __init__(self, N=192, M=192, **kwargs): | ||
super().__init__(N, M, **kwargs) | ||
|
||
self.context_prediction = CheckerboardMaskedConv2d( | ||
M, 2 * M, kernel_size=5, padding=2, stride=1 | ||
) | ||
|
||
def forward(self, x): | ||
y = self.g_a(x) | ||
z = self.h_a(y) | ||
z_hat, z_likelihoods = self.entropy_bottleneck(z) | ||
params = self.h_s(z_hat) | ||
|
||
y_hat = self.gaussian_conditional.quantize( | ||
y, "noise" if self.training else "dequantize" | ||
) | ||
|
||
# set non_anchor to 0 | ||
y_half = y_hat.clone() | ||
y_half[:, :, 0::2, 0::2] = 0 | ||
y_half[:, :, 1::2, 1::2] = 0 | ||
|
||
# set anchor's ctx to 0, otherwise there will be a bias | ||
ctx_params = self.context_prediction(y_half) | ||
ctx_params[:, :, 0::2, 1::2] = 0 | ||
ctx_params[:, :, 1::2, 0::2] = 0 | ||
|
||
gaussian_params = self.entropy_parameters( | ||
torch.cat((params, ctx_params), dim=1) | ||
) | ||
scales_hat, means_hat = gaussian_params.chunk(2, 1) | ||
_, y_likelihoods = self.gaussian_conditional(y, scales_hat, means=means_hat) | ||
x_hat = self.g_s(y_hat) | ||
|
||
return { | ||
"x_hat": x_hat, | ||
"likelihoods": {"y": y_likelihoods, "z": z_likelihoods}, | ||
} | ||
|
||
def compress(self, x): | ||
y = self.g_a(x) | ||
z = self.h_a(y) | ||
|
||
z_strings = self.entropy_bottleneck.compress(z) | ||
z_hat = self.entropy_bottleneck.decompress(z_strings, z.size()[-2:]) | ||
|
||
params = self.h_s(z_hat) | ||
|
||
# Notion: in compressai, the means must be subtracted before quantification. | ||
# In order to get y_half, we need subtract y_anchor's means and then quantize, | ||
# to get y_anchor's means, we have to go through 'gep' here | ||
N, _, H, W = z_hat.shape | ||
zero_ctx_params = torch.zeros([N, 2 * self.M, H * 4, W * 4]).to(z_hat.device) | ||
gaussian_params = self.entropy_parameters( | ||
torch.cat((params, zero_ctx_params), dim=1) | ||
) | ||
_, means_hat = gaussian_params.chunk(2, 1) | ||
y_hat = self.gaussian_conditional.quantize(y, "dequantize", means=means_hat) | ||
|
||
# set non_anchor to 0 | ||
y_half = y_hat.clone() | ||
y_half[:, :, 0::2, 0::2] = 0 | ||
y_half[:, :, 1::2, 1::2] = 0 | ||
|
||
# set anchor's ctx to 0, otherwise there will be a bias | ||
ctx_params = self.context_prediction(y_half) | ||
ctx_params[:, :, 0::2, 1::2] = 0 | ||
ctx_params[:, :, 1::2, 0::2] = 0 | ||
|
||
gaussian_params = self.entropy_parameters( | ||
torch.cat((params, ctx_params), dim=1) | ||
) | ||
|
||
scales_hat, means_hat = gaussian_params.chunk(2, 1) | ||
|
||
y_anchor, y_non_anchor = Demultiplexer(y) | ||
scales_hat_anchor, scales_hat_non_anchor = Demultiplexer(scales_hat) | ||
means_hat_anchor, means_hat_non_anchor = Demultiplexer(means_hat) | ||
|
||
indexes_anchor = self.gaussian_conditional.build_indexes(scales_hat_anchor) | ||
indexes_non_anchor = self.gaussian_conditional.build_indexes(scales_hat_non_anchor) | ||
|
||
anchor_strings = self.gaussian_conditional.compress(y_anchor, indexes_anchor, means=means_hat_anchor) | ||
non_anchor_strings = self.gaussian_conditional.compress(y_non_anchor, indexes_non_anchor, means=means_hat_non_anchor) | ||
|
||
return { | ||
"strings": [anchor_strings, non_anchor_strings, z_strings], | ||
"shape": z.size()[-2:], | ||
} | ||
|
||
def decompress(self, strings, shape): | ||
""" | ||
See Figure 5. Illustration of the proposed two-pass decoding. | ||
""" | ||
assert isinstance(strings, list) and len(strings) == 3 | ||
z_hat = self.entropy_bottleneck.decompress(strings[2], shape) | ||
params = self.h_s(z_hat) | ||
|
||
# PASS 1: anchor | ||
N, _, H, W = z_hat.shape | ||
zero_ctx_params = torch.zeros([N, 2 * self.M, H * 4, W * 4]).to(z_hat.device) | ||
gaussian_params = self.entropy_parameters( | ||
torch.cat((params, zero_ctx_params), dim=1) | ||
) | ||
|
||
scales_hat, means_hat = gaussian_params.chunk(2, 1) | ||
scales_hat_anchor, _ = Demultiplexer(scales_hat) | ||
means_hat_anchor, _ = Demultiplexer(means_hat) | ||
|
||
indexes_anchor = self.gaussian_conditional.build_indexes(scales_hat_anchor) | ||
y_anchor = self.gaussian_conditional.decompress(strings[0], indexes_anchor, means=means_hat_anchor) # [1, 384, 8, 8] | ||
y_anchor = Multiplexer(y_anchor, torch.zeros_like(y_anchor)) # [1, 192, 16, 16] | ||
|
||
# PASS 2: non-anchor | ||
ctx_params = self.context_prediction(y_anchor) | ||
gaussian_params = self.entropy_parameters( | ||
torch.cat((params, ctx_params), dim=1) | ||
) | ||
|
||
scales_hat, means_hat = gaussian_params.chunk(2, 1) | ||
_, scales_hat_non_anchor = Demultiplexer(scales_hat) | ||
_, means_hat_non_anchor = Demultiplexer(means_hat) | ||
|
||
indexes_non_anchor = self.gaussian_conditional.build_indexes(scales_hat_non_anchor) | ||
y_non_anchor = self.gaussian_conditional.decompress(strings[1], indexes_non_anchor, means=means_hat_non_anchor) # [1, 384, 8, 8] | ||
y_non_anchor = Multiplexer(torch.zeros_like(y_non_anchor), y_non_anchor) # [1, 192, 16, 16] | ||
|
||
# gather | ||
y_hat = y_anchor + y_non_anchor | ||
x_hat = self.g_s(y_hat).clamp_(0, 1) | ||
|
||
return { | ||
"x_hat": x_hat, | ||
} | ||
|
||
|
||
if __name__ == "__main__": | ||
x = torch.randn([1, 3, 256, 256]) | ||
model = CheckerboardAutogressive() | ||
model.update(force=True) | ||
|
||
out = model.compress(x) | ||
rec = model.decompress(out["strings"], out["shape"]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .modules import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
from turtle import forward | ||
import torch.nn as nn | ||
import torch | ||
|
||
|
||
class Space2Depth(nn.Module): | ||
""" | ||
ref: https://github.com/huzi96/Coarse2Fine-PyTorch/blob/master/networks.py | ||
""" | ||
|
||
def __init__(self, r=2): | ||
super().__init__() | ||
self.r = r | ||
|
||
def forward(self, x): | ||
r = self.r | ||
b, c, h, w = x.size() | ||
out_c = c * (r**2) | ||
out_h = h // r | ||
out_w = w // r | ||
x_view = x.view(b, c, out_h, r, out_w, r) | ||
x_prime = x_view.permute(0, 3, 5, 1, 2, 4).contiguous().view(b, out_c, out_h, out_w) | ||
return x_prime | ||
|
||
|
||
class Depth2Space(nn.Module): | ||
def __init__(self, r=2): | ||
super().__init__() | ||
self.r = r | ||
|
||
def forward(self, x): | ||
r = self.r | ||
b, c, h, w = x.size() | ||
out_c = c // (r**2) | ||
out_h = h * r | ||
out_w = w * r | ||
x_view = x.view(b, r, r, out_c, h, w) | ||
x_prime = x_view.permute(0, 3, 4, 1, 5, 2).contiguous().view(b, out_c, out_h, out_w) | ||
return x_prime | ||
|
||
|
||
def Demultiplexer(x): | ||
""" | ||
See Supplementary Material: Figure 2 | ||
""" | ||
x_prime = Space2Depth(r=2)(x) | ||
|
||
_, C, _, _ = x_prime.shape | ||
anchor_index = tuple(range(C // 4, C * 3 // 4)) | ||
non_anchor_index = tuple(range(0, C // 4)) + tuple(range(C * 3 // 4, C)) | ||
|
||
anchor = x_prime[:, anchor_index, :, :] | ||
non_anchor = x_prime[:, non_anchor_index, :, :] | ||
|
||
return anchor, non_anchor | ||
|
||
def Multiplexer(anchor, non_anchor): | ||
""" | ||
The inverse opperation of Demultiplexer | ||
""" | ||
_, C, _, _ = non_anchor.shape | ||
x_prime = torch.cat((non_anchor[:, : C//2, :, :], anchor, non_anchor[:, C//2:, :, :]), dim=1) | ||
return Depth2Space(r=2)(x_prime) | ||
|
||
|
||
if __name__ == '__main__': | ||
x = torch.zeros(1, 1, 6, 6) | ||
x[0, 0, 0, 0] = 0 | ||
x[0, 0, 0, 1] = 1 | ||
x[0, 0, 1, 0] = 2 | ||
x[0, 0, 1, 1] = 3 | ||
print(x) | ||
|
||
anchor, non_anchor = Demultiplexer(x) | ||
print(anchor) | ||
print(non_anchor) | ||
|
||
x = Multiplexer(anchor, non_anchor) | ||
print(x) |