Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Set an absolute lower bound on the statistic when choosing HVGs. #1

Merged
merged 3 commits into from
Oct 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
cmake_minimum_required(VERSION 3.14)

project(scran_variances
VERSION 0.1.2
VERSION 0.1.3
DESCRIPTION "Model per-gene variances in single-cell expression"
LANGUAGES CXX)

Expand Down
242 changes: 175 additions & 67 deletions include/scran_variances/choose_highly_variable_genes.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,7 @@ namespace scran_variances {
struct ChooseHighlyVariableGenesOptions {
/**
* Number of top genes to choose.
* This should be positive.
* The actual number of genes may be smaller, if there are fewer genes in the dataset than `top`;
* The actual number of genes may be smaller, if `top` is greater than the number of genes in the dataset with statistics greater than `threshold`;
* or larger, if `ChooseHighlyVariableGenesOptions::keep_ties = true`.
*/
size_t top = 4000;
Expand All @@ -30,6 +29,13 @@ struct ChooseHighlyVariableGenesOptions {
*/
bool larger = true;

/**
* The first value specifies whether to consider an absolute bound on the statistic when choosing HVGs.
* The second value is a lower bound for the statistic, at or below which a gene will not be considered as highly variable even if it is among the top `top` genes.
* If `ChooseHighlyVariableGenesOptions::larger = false`, this is an upper bound instead.
*/
std::pair<bool, double> bound = std::make_pair<bool, double>(false, 0);

/**
* Whether to keep all genes with statistics that are tied with the `top`-th gene.
* If `false`, ties are arbitrarily broken but the number of retained genes will not be greater than `top`.
Expand All @@ -38,51 +44,175 @@ struct ChooseHighlyVariableGenesOptions {
};

/**
* @tparam Stat_ Type of the variance statistic.
* @tparam Bool_ Type to be used as a boolean.
*
* @param n Number of genes.
* @param[in] statistic Pointer to an array of length `n` containing the per-gene variance statistics.
* @param[out] output Pointer to an array of length `n`.
* On output, this is filled with `true` if the gene is to be retained and `false` otherwise.
* @param options Further options.
* @cond
*/
template<typename Stat_, typename Bool_>
void choose_highly_variable_genes(size_t n, const Stat_* statistic, Bool_* output, const ChooseHighlyVariableGenesOptions& options) {
namespace internal {

template<typename Index_, typename Stat_, class Cmp_>
std::vector<Index_> create_semisorted_indices(size_t n, const Stat_* statistic, Cmp_ cmp, size_t top) {
std::vector<Index_> collected(n);
std::iota(collected.begin(), collected.end(), static_cast<Index_>(0));
auto cBegin = collected.begin(), cMid = cBegin + top - 1, cEnd = collected.end();
std::nth_element(cBegin, cMid, cEnd, [&](Index_ l, Index_ r) -> bool {
auto L = statistic[l], R = statistic[r];
if (L == R) {
return l < r; // always favor the earlier index for a stable sort, even if options.larger = false.
} else {
return cmp(L, R);
}
});
return collected;
}

template<typename Stat_, class Output_, class Cmp_, class CmpEqual_>
void choose_highly_variable_genes(size_t n, const Stat_* statistic, Output_* output, Cmp_ cmp, CmpEqual_ cmpeq, const ChooseHighlyVariableGenesOptions& options) {
if (options.top == 0) {
std::fill_n(output, n, false);
return;
}

Stat_ bound = options.bound.second;
if (options.top >= n) {
std::fill_n(output, n, true);
if (options.bound.first) {
for (size_t i = 0; i < n; ++i) {
output[i] = cmp(statistic[i], bound);
}
} else {
std::fill_n(output, n, true);
}
return;
} else if (options.top == 0) {
std::fill_n(output, n, false);
}

auto collected = create_semisorted_indices<size_t>(n, statistic, cmp, options.top);
Stat_ threshold = statistic[collected[options.top - 1]];

if (options.keep_ties) {
if (options.bound.first && !cmp(threshold, bound)) {
for (size_t i = 0; i < n; ++i) {
output[i] = cmp(statistic[i], bound);
}
} else {
for (size_t i = 0; i < n; ++i) {
output[i] = cmpeq(statistic[i], threshold);
}
}
return;
}

std::vector<size_t> collected(n);
std::iota(collected.begin(), collected.end(), static_cast<size_t>(0));
auto cBegin = collected.begin(), cMid = cBegin + options.top - 1, cEnd = collected.end();
if (options.larger) {
std::nth_element(cBegin, cMid, cEnd, [&](size_t l, size_t r) -> bool { return statistic[l] > statistic[r]; });
} else {
std::nth_element(cBegin, cMid, cEnd, [&](size_t l, size_t r) -> bool { return statistic[l] < statistic[r]; });
std::fill_n(output, n, false);
size_t counter = options.top;
if (options.bound.first && !cmp(threshold, bound)) {
--counter;
while (counter > 0) {
--counter;
if (cmp(statistic[collected[counter]], bound)) {
++counter;
break;
}
}
}

if (!options.keep_ties) {
std::fill_n(output, n, false);
for (size_t i = 0; i < options.top; ++i) {
output[collected[i]] = true;
for (size_t i = 0; i < counter; ++i) {
output[collected[i]] = true;
}
}

template<typename Index_, typename Stat_, class Cmp_, class CmpEqual_>
std::vector<Index_> choose_highly_variable_genes_index(size_t n, const Stat_* statistic, Cmp_ cmp, CmpEqual_ cmpeq, const ChooseHighlyVariableGenesOptions& options) {
std::vector<Index_> output;
if (options.top == 0) {
return output;
}

Stat_ bound = options.bound.second;
if (options.top >= n) {
if (options.bound.first) {
for (size_t i = 0; i < n; ++i) {
if (options.bound.first && cmp(statistic[i], bound)) {
output.push_back(i);
}
}
} else {
output.resize(n);
std::iota(output.begin(), output.end(), static_cast<Index_>(0));
}
} else {
auto threshold = statistic[collected[options.top - 1]];
if (options.larger) {
return output;
}

output = create_semisorted_indices<Index_>(n, statistic, cmp, options.top);
Stat_ threshold = statistic[output[options.top - 1]];

if (options.keep_ties) {
output.clear();
if (options.bound.first && !cmp(threshold, bound)) {
for (size_t i = 0; i < n; ++i) {
output[i] = statistic[i] >= threshold;
if (cmp(statistic[i], bound)) {
output.push_back(i);
}
}
} else {
for (size_t i = 0; i < n; ++i) {
output[i] = statistic[i] <= threshold;
if (cmpeq(statistic[i], threshold)) {
output.push_back(i);
}
}
}
return output;
}

size_t counter = options.top;
if (options.bound.first && !cmp(threshold, bound)) {
--counter;
while (counter > 0) {
--counter;
if (cmp(statistic[output[counter]], bound)) {
++counter;
break;
}
}
}

output.resize(counter);
std::sort(output.begin(), output.end());
return output;
}

}
/**
* @endcond
*/

/**
* @tparam Stat_ Type of the variance statistic.
* @tparam Bool_ Type to be used as a boolean.
*
* @param n Number of genes.
* @param[in] statistic Pointer to an array of length `n` containing the per-gene variance statistics.
* @param[out] output Pointer to an array of length `n`.
* On output, this is filled with `true` if the gene is to be retained and `false` otherwise.
* @param options Further options.
*/
template<typename Stat_, typename Bool_>
void choose_highly_variable_genes(size_t n, const Stat_* statistic, Bool_* output, const ChooseHighlyVariableGenesOptions& options) {
if (options.larger) {
internal::choose_highly_variable_genes(
n,
statistic,
output,
[](Stat_ l, Stat_ r) -> bool { return l > r; },
[](Stat_ l, Stat_ r) -> bool { return l >= r; },
options
);
} else {
internal::choose_highly_variable_genes(
n,
statistic,
output,
[](Stat_ l, Stat_ r) -> bool { return l < r; },
[](Stat_ l, Stat_ r) -> bool { return l <= r; },
options
);
}
}

/**
Expand Down Expand Up @@ -115,45 +245,23 @@ std::vector<Bool_> choose_highly_variable_genes(size_t n, const Stat_* statistic
*/
template<typename Index_, typename Stat_>
std::vector<Index_> choose_highly_variable_genes_index(Index_ n, const Stat_* statistic, const ChooseHighlyVariableGenesOptions& options) {
if (options.top >= static_cast<size_t>(n)) {
std::vector<Index_> output(n);
std::iota(output.begin(), output.end(), static_cast<Index_>(0));
return output;
} else if (options.top == 0) {
return std::vector<Index_>();
}

std::vector<Index_> collected(n);
std::iota(collected.begin(), collected.end(), static_cast<Index_>(0));
auto cBegin = collected.begin(), cMid = cBegin + options.top - 1, cEnd = collected.end();
if (options.larger) {
std::nth_element(cBegin, cMid, cEnd, [&](size_t l, size_t r) -> bool { return statistic[l] > statistic[r]; });
return internal::choose_highly_variable_genes_index<Index_>(
n,
statistic,
[](Stat_ l, Stat_ r) -> bool { return l > r; },
[](Stat_ l, Stat_ r) -> bool { return l >= r; },
options
);
} else {
std::nth_element(cBegin, cMid, cEnd, [&](size_t l, size_t r) -> bool { return statistic[l] < statistic[r]; });
return internal::choose_highly_variable_genes_index<Index_>(
n,
statistic,
[](Stat_ l, Stat_ r) -> bool { return l < r; },
[](Stat_ l, Stat_ r) -> bool { return l <= r; },
options
);
}

if (!options.keep_ties) {
collected.resize(options.top);
std::sort(collected.begin(), collected.end());
} else {
auto threshold = statistic[collected[options.top - 1]];
collected.clear();
if (options.larger) {
for (Index_ i = 0; i < n; ++i) {
if (statistic[i] >= threshold) {
collected.push_back(i);
}
}
} else {
for (Index_ i = 0; i < n; ++i) {
if (statistic[i] <= threshold) {
collected.push_back(i);
}
}
}
}

return collected;
}

}
Expand Down
Loading