Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[InstCombine] Handle ceil division idiom #100977

Open
wants to merge 7 commits into
base: main
Choose a base branch
from

Conversation

antoniofrighetto
Copy link
Contributor

The expression add (udiv (sub A, Bias), B), Bias can be folded to udiv (add A, B - 1), B) when the sum between A and B is known not to overflow, and Bias = A != 0.

Fixes: #95652.

Proof: https://alive2.llvm.org/ce/z/hiWHQA.

The expression `add (udiv (sub A, Bias), B), Bias` can be
folded to `udiv (add A, B - 1), B)` when the sum between
`A` and `B` is known not to overflow, and `Bias = A != 0`.

Fixes: llvm#95652.

Proof: https://alive2.llvm.org/ce/z/hiWHQA.
@llvmbot
Copy link
Member

llvmbot commented Jul 29, 2024

@llvm/pr-subscribers-llvm-transforms

Author: Antonio Frighetto (antoniofrighetto)

Changes

The expression add (udiv (sub A, Bias), B), Bias can be folded to udiv (add A, B - 1), B) when the sum between A and B is known not to overflow, and Bias = A != 0.

Fixes: #95652.

Proof: https://alive2.llvm.org/ce/z/hiWHQA.


Full diff: https://github.com/llvm/llvm-project/pull/100977.diff

2 Files Affected:

  • (modified) llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp (+71-24)
  • (added) llvm/test/Transforms/InstCombine/fold-ceil-div-idiom.ll (+253)
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
index 3bd086230cbec..aded338982fcf 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -1250,6 +1250,75 @@ static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
   return nullptr;
 }
 
+static Value *foldCeilIdioms(BinaryOperator &I, InstCombinerImpl &IC) {
+  assert(I.getOpcode() == Instruction::Add && "Expecting add instruction.");
+  Value *A, *B;
+  ICmpInst::Predicate Pred;
+  auto &ICB = IC.Builder;
+
+  // Fold the log2 ceil idiom:
+  // zext (ctpop(A) >u/!= 1) + (ctlz (A, true) ^ (BW - 1))
+  //      -> BW - ctlz (A - 1, false)
+  const APInt *XorC;
+  if (match(&I,
+            m_c_Add(
+                m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)),
+                              m_One())),
+                m_OneUse(m_ZExtOrSelf(m_OneUse(m_Xor(
+                    m_OneUse(m_TruncOrSelf(m_OneUse(
+                        m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))),
+                    m_APInt(XorC))))))) &&
+      (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) &&
+      *XorC == A->getType()->getScalarSizeInBits() - 1) {
+    Value *Sub = ICB.CreateAdd(A, Constant::getAllOnesValue(A->getType()));
+    Value *Ctlz = ICB.CreateIntrinsic(Intrinsic::ctlz, {A->getType()},
+                                      {Sub, ICB.getFalse()});
+    Value *Ret = ICB.CreateSub(
+        ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()),
+        Ctlz, "", /*HasNUW*/ true, /*HasNSW*/ true);
+    return ICB.CreateZExtOrTrunc(Ret, I.getType());
+  }
+
+  // Fold the ceil division idiom:
+  // add (udiv (sub A, Bias), B), Bias
+  //      -> udiv (add A, B - 1), B)
+  // with Bias = A != 0; A + B not to overflow
+  auto MatchDivision = [&IC](Instruction *Div, Value *&DivOp0, Value *&DivOp1) {
+    if (match(Div, m_UDiv(m_Value(DivOp0), m_Value(DivOp1))))
+      return true;
+
+    Value *N;
+    const APInt *C;
+    if (match(Div, m_LShr(m_Value(DivOp0), m_Value(N))) &&
+        match(N,
+              m_OneUse(m_Sub(m_APInt(C), m_Intrinsic<Intrinsic::ctlz>(
+                                             m_Specific(DivOp1), m_Zero())))) &&
+        (*C == Div->getType()->getScalarSizeInBits() - 1) &&
+        IC.isKnownToBeAPowerOfTwo(DivOp1, true, 0, Div))
+      return true;
+
+    return false;
+  };
+
+  Instruction *Div;
+  Value *Bias, *Sub;
+  if (match(&I, m_c_Add(m_Instruction(Div), m_Value(Bias))) &&
+      MatchDivision(Div, Sub, B) &&
+      match(Sub, m_Sub(m_Value(A), m_Value(Bias))) &&
+      match(Bias, m_ZExt(m_ICmp(Pred, m_Specific(A), m_ZeroInt()))) &&
+      Pred == ICmpInst::ICMP_NE && Bias->hasNUses(2)) {
+    WithCache<const Value *> LHSCache(A), RHSCache(B);
+    auto OR = IC.computeOverflowForUnsignedAdd(LHSCache, RHSCache, &I);
+    if (OR == OverflowResult::NeverOverflows) {
+      auto *BMinusOne =
+          ICB.CreateAdd(B, Constant::getAllOnesValue(I.getType()));
+      return ICB.CreateUDiv(ICB.CreateAdd(A, BMinusOne), B);
+    }
+  }
+
+  return nullptr;
+}
+
 // Transform:
 //  (add A, (shl (neg B), Y))
 //      -> (sub A, (shl B, Y))
@@ -1785,30 +1854,8 @@ Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
                                    {Builder.CreateOr(A, B)}));
 
-  // Fold the log2_ceil idiom:
-  // zext(ctpop(A) >u/!= 1) + (ctlz(A, true) ^ (BW - 1))
-  // -->
-  // BW - ctlz(A - 1, false)
-  const APInt *XorC;
-  ICmpInst::Predicate Pred;
-  if (match(&I,
-            m_c_Add(
-                m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)),
-                              m_One())),
-                m_OneUse(m_ZExtOrSelf(m_OneUse(m_Xor(
-                    m_OneUse(m_TruncOrSelf(m_OneUse(
-                        m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))),
-                    m_APInt(XorC))))))) &&
-      (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) &&
-      *XorC == A->getType()->getScalarSizeInBits() - 1) {
-    Value *Sub = Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()));
-    Value *Ctlz = Builder.CreateIntrinsic(Intrinsic::ctlz, {A->getType()},
-                                          {Sub, Builder.getFalse()});
-    Value *Ret = Builder.CreateSub(
-        ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()),
-        Ctlz, "", /*HasNUW*/ true, /*HasNSW*/ true);
-    return replaceInstUsesWith(I, Builder.CreateZExtOrTrunc(Ret, I.getType()));
-  }
+  if (Value *V = foldCeilIdioms(I, *this))
+    return replaceInstUsesWith(I, V);
 
   if (Instruction *Res = foldSquareSumInt(I))
     return Res;
diff --git a/llvm/test/Transforms/InstCombine/fold-ceil-div-idiom.ll b/llvm/test/Transforms/InstCombine/fold-ceil-div-idiom.ll
new file mode 100644
index 0000000000000..b9cc0fa6ce050
--- /dev/null
+++ b/llvm/test/Transforms/InstCombine/fold-ceil-div-idiom.ll
@@ -0,0 +1,253 @@
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 4
+; RUN: opt < %s -passes=instcombine -S | FileCheck %s
+
+define i8 @ceil_div_idiom(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT:    [[WO:%.*]] = call { i8, i1 } @llvm.uadd.with.overflow.i8(i8 [[X]], i8 [[Y]])
+; CHECK-NEXT:    [[OV:%.*]] = extractvalue { i8, i1 } [[WO]], 1
+; CHECK-NEXT:    [[OV_NOT:%.*]] = xor i1 [[OV]], true
+; CHECK-NEXT:    call void @llvm.assume(i1 [[OV_NOT]])
+; CHECK-NEXT:    [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT:    [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT:    [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT:    [[DIV:%.*]] = udiv i8 [[SUB]], [[Y]]
+; CHECK-NEXT:    [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT:    ret i8 [[ADD]]
+;
+  %wo = call {i8, i1} @llvm.uadd.with.overflow(i8 %x, i8 %y)
+  %ov = extractvalue {i8, i1} %wo, 1
+  %ov.not = xor i1 %ov, true
+  call void @llvm.assume(i1 %ov.not)
+
+  %nonzero = icmp ne i8 %x, 0
+  %bias = zext i1 %nonzero to i8
+  %sub = sub i8 %x, %bias
+  %div = udiv i8 %sub, %y
+  %add = add i8 %div, %bias
+  ret i8 %add
+}
+
+define i8 @ceil_div_idiom_2(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom_2(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT:    [[OV_NOT:%.*]] = add nuw i8 [[X]], [[Y]]
+; CHECK-NEXT:    [[TRUNC:%.*]] = trunc i8 [[OV_NOT]] to i1
+; CHECK-NEXT:    call void @llvm.assume(i1 [[TRUNC]])
+; CHECK-NEXT:    [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT:    [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT:    [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT:    [[DIV:%.*]] = udiv i8 [[SUB]], [[Y]]
+; CHECK-NEXT:    [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT:    ret i8 [[ADD]]
+;
+  %ov.not = add nuw i8 %x, %y
+  %trunc = trunc i8 %ov.not to i1
+  call void @llvm.assume(i1 %trunc)
+
+  %nonzero = icmp ne i8 %x, 0
+  %bias = zext i1 %nonzero to i8
+  %sub = sub i8 %x, %bias
+  %div = udiv i8 %sub, %y
+  %add = add i8 %div, %bias
+  ret i8 %add
+}
+
+define i8 @ceil_div_idiom_with_lshr(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom_with_lshr(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT:    [[WO:%.*]] = call { i8, i1 } @llvm.uadd.with.overflow.i8(i8 [[X]], i8 [[Y]])
+; CHECK-NEXT:    [[OV:%.*]] = extractvalue { i8, i1 } [[WO]], 1
+; CHECK-NEXT:    [[OV_NOT:%.*]] = xor i1 [[OV]], true
+; CHECK-NEXT:    call void @llvm.assume(i1 [[OV_NOT]])
+; CHECK-NEXT:    [[CTPOPULATION:%.*]] = call range(i8 0, 9) i8 @llvm.ctpop.i8(i8 [[Y]])
+; CHECK-NEXT:    [[IS_POW_2:%.*]] = icmp eq i8 [[CTPOPULATION]], 1
+; CHECK-NEXT:    call void @llvm.assume(i1 [[IS_POW_2]])
+; CHECK-NEXT:    [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT:    [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT:    [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT:    [[CTLZ:%.*]] = tail call range(i8 0, 9) i8 @llvm.ctlz.i8(i8 [[Y]], i1 true)
+; CHECK-NEXT:    [[N:%.*]] = xor i8 [[CTLZ]], 7
+; CHECK-NEXT:    [[DIV:%.*]] = lshr i8 [[SUB]], [[N]]
+; CHECK-NEXT:    [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT:    ret i8 [[ADD]]
+;
+  %wo = call {i8, i1} @llvm.uadd.with.overflow(i8 %x, i8 %y)
+  %ov = extractvalue {i8, i1} %wo, 1
+  %ov.not = xor i1 %ov, true
+  call void @llvm.assume(i1 %ov.not)
+
+  %ctpopulation = call i8 @llvm.ctpop.i8(i8 %y)
+  %is_pow_2 = icmp eq i8 %ctpopulation, 1
+  call void @llvm.assume(i1 %is_pow_2)
+
+  %nonzero = icmp ne i8 %x, 0
+  %bias = zext i1 %nonzero to i8
+  %sub = sub i8 %x, %bias
+  %ctlz = tail call i8 @llvm.ctlz.i8(i8 %y, i1 true)
+  %n = sub i8 7, %ctlz
+  %div = lshr i8 %sub, %n
+  %add = add i8 %div, %bias
+  ret i8 %add
+}
+
+define i8 @ceil_div_idiom_add_may_overflow(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom_add_may_overflow(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT:    [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT:    [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT:    [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT:    [[DIV:%.*]] = udiv i8 [[SUB]], [[Y]]
+; CHECK-NEXT:    [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT:    ret i8 [[ADD]]
+;
+  %nonzero = icmp ne i8 %x, 0
+  %bias = zext i1 %nonzero to i8
+  %sub = sub i8 %x, %bias
+  %div = udiv i8 %sub, %y
+  %add = add i8 %div, %bias
+  ret i8 %add
+}
+
+define i8 @ceil_div_idiom_multiuse_bias(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom_multiuse_bias(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT:    [[WO:%.*]] = call { i8, i1 } @llvm.uadd.with.overflow.i8(i8 [[X]], i8 [[Y]])
+; CHECK-NEXT:    [[OV:%.*]] = extractvalue { i8, i1 } [[WO]], 1
+; CHECK-NEXT:    [[OV_NOT:%.*]] = xor i1 [[OV]], true
+; CHECK-NEXT:    call void @llvm.assume(i1 [[OV_NOT]])
+; CHECK-NEXT:    [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT:    [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT:    [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT:    [[DIV:%.*]] = udiv i8 [[SUB]], [[Y]]
+; CHECK-NEXT:    [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT:    call void @use(i8 [[BIAS]])
+; CHECK-NEXT:    ret i8 [[ADD]]
+;
+  %wo = call {i8, i1} @llvm.uadd.with.overflow(i8 %x, i8 %y)
+  %ov = extractvalue {i8, i1} %wo, 1
+  %ov.not = xor i1 %ov, true
+  call void @llvm.assume(i1 %ov.not)
+
+  %nonzero = icmp ne i8 %x, 0
+  %bias = zext i1 %nonzero to i8
+  %sub = sub i8 %x, %bias
+  %div = udiv i8 %sub, %y
+  %add = add i8 %div, %bias
+  call void @use(i8 %bias)
+  ret i8 %add
+}
+
+define i8 @ceil_div_idiom_with_lshr_not_power_2(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom_with_lshr_not_power_2(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT:    [[WO:%.*]] = call { i8, i1 } @llvm.uadd.with.overflow.i8(i8 [[X]], i8 [[Y]])
+; CHECK-NEXT:    [[OV:%.*]] = extractvalue { i8, i1 } [[WO]], 1
+; CHECK-NEXT:    [[OV_NOT:%.*]] = xor i1 [[OV]], true
+; CHECK-NEXT:    call void @llvm.assume(i1 [[OV_NOT]])
+; CHECK-NEXT:    [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT:    [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT:    [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT:    [[CTLZ:%.*]] = tail call range(i8 0, 9) i8 @llvm.ctlz.i8(i8 [[Y]], i1 true)
+; CHECK-NEXT:    [[N:%.*]] = xor i8 [[CTLZ]], 7
+; CHECK-NEXT:    [[DIV:%.*]] = lshr i8 [[SUB]], [[N]]
+; CHECK-NEXT:    [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT:    ret i8 [[ADD]]
+;
+  %wo = call {i8, i1} @llvm.uadd.with.overflow(i8 %x, i8 %y)
+  %ov = extractvalue {i8, i1} %wo, 1
+  %ov.not = xor i1 %ov, true
+  call void @llvm.assume(i1 %ov.not)
+
+  %nonzero = icmp ne i8 %x, 0
+  %bias = zext i1 %nonzero to i8
+  %sub = sub i8 %x, %bias
+  %ctlz = tail call i8 @llvm.ctlz.i8(i8 %y, i1 true)
+  %n = sub i8 7, %ctlz
+  %div = lshr i8 %sub, %n
+  %add = add i8 %div, %bias
+  ret i8 %add
+}
+
+define i8 @ceil_div_idiom_with_lshr_wrong_bw(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom_with_lshr_wrong_bw(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT:    [[WO:%.*]] = call { i8, i1 } @llvm.uadd.with.overflow.i8(i8 [[X]], i8 [[Y]])
+; CHECK-NEXT:    [[OV:%.*]] = extractvalue { i8, i1 } [[WO]], 1
+; CHECK-NEXT:    [[OV_NOT:%.*]] = xor i1 [[OV]], true
+; CHECK-NEXT:    call void @llvm.assume(i1 [[OV_NOT]])
+; CHECK-NEXT:    [[CTPOPULATION:%.*]] = call range(i8 0, 9) i8 @llvm.ctpop.i8(i8 [[Y]])
+; CHECK-NEXT:    [[IS_POW_2:%.*]] = icmp eq i8 [[CTPOPULATION]], 1
+; CHECK-NEXT:    call void @llvm.assume(i1 [[IS_POW_2]])
+; CHECK-NEXT:    [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT:    [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT:    [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT:    [[CTLZ:%.*]] = tail call range(i8 0, 9) i8 @llvm.ctlz.i8(i8 [[Y]], i1 true)
+; CHECK-NEXT:    [[N:%.*]] = sub nuw nsw i8 8, [[CTLZ]]
+; CHECK-NEXT:    [[DIV:%.*]] = lshr i8 [[SUB]], [[N]]
+; CHECK-NEXT:    [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT:    ret i8 [[ADD]]
+;
+  %wo = call {i8, i1} @llvm.uadd.with.overflow(i8 %x, i8 %y)
+  %ov = extractvalue {i8, i1} %wo, 1
+  %ov.not = xor i1 %ov, true
+  call void @llvm.assume(i1 %ov.not)
+
+  %ctpopulation = call i8 @llvm.ctpop.i8(i8 %y)
+  %is_pow_2 = icmp eq i8 %ctpopulation, 1
+  call void @llvm.assume(i1 %is_pow_2)
+
+  %nonzero = icmp ne i8 %x, 0
+  %bias = zext i1 %nonzero to i8
+  %sub = sub i8 %x, %bias
+  %ctlz = tail call i8 @llvm.ctlz.i8(i8 %y, i1 true)
+  %n = sub i8 8, %ctlz
+  %div = lshr i8 %sub, %n
+  %add = add i8 %div, %bias
+  ret i8 %add
+}
+
+define i8 @ceil_div_idiom_with_lshr_multiuse_n(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom_with_lshr_multiuse_n(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT:    [[WO:%.*]] = call { i8, i1 } @llvm.uadd.with.overflow.i8(i8 [[X]], i8 [[Y]])
+; CHECK-NEXT:    [[OV:%.*]] = extractvalue { i8, i1 } [[WO]], 1
+; CHECK-NEXT:    [[OV_NOT:%.*]] = xor i1 [[OV]], true
+; CHECK-NEXT:    call void @llvm.assume(i1 [[OV_NOT]])
+; CHECK-NEXT:    [[CTPOPULATION:%.*]] = call range(i8 0, 9) i8 @llvm.ctpop.i8(i8 [[Y]])
+; CHECK-NEXT:    [[IS_POW_2:%.*]] = icmp eq i8 [[CTPOPULATION]], 1
+; CHECK-NEXT:    call void @llvm.assume(i1 [[IS_POW_2]])
+; CHECK-NEXT:    [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT:    [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT:    [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT:    [[CTLZ:%.*]] = tail call range(i8 0, 9) i8 @llvm.ctlz.i8(i8 [[Y]], i1 true)
+; CHECK-NEXT:    [[N:%.*]] = sub nuw nsw i8 8, [[CTLZ]]
+; CHECK-NEXT:    [[DIV:%.*]] = lshr i8 [[SUB]], [[N]]
+; CHECK-NEXT:    call void @use(i8 [[N]])
+; CHECK-NEXT:    [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT:    ret i8 [[ADD]]
+;
+  %wo = call {i8, i1} @llvm.uadd.with.overflow(i8 %x, i8 %y)
+  %ov = extractvalue {i8, i1} %wo, 1
+  %ov.not = xor i1 %ov, true
+  call void @llvm.assume(i1 %ov.not)
+
+  %ctpopulation = call i8 @llvm.ctpop.i8(i8 %y)
+  %is_pow_2 = icmp eq i8 %ctpopulation, 1
+  call void @llvm.assume(i1 %is_pow_2)
+
+  %nonzero = icmp ne i8 %x, 0
+  %bias = zext i1 %nonzero to i8
+  %sub = sub i8 %x, %bias
+  %ctlz = tail call i8 @llvm.ctlz.i8(i8 %y, i1 true)
+  %n = sub i8 8, %ctlz
+  %div = lshr i8 %sub, %n
+  call void @use(i8 %n)
+  %add = add i8 %div, %bias
+  ret i8 %add
+}
+
+declare { i8, i1 } @llvm.uadd.with.overflow.i8(i8, i8)
+declare i8 @llvm.ctpop.i8(i8)
+declare void @llvm.assume(i1)
+declare void @use(i8)

@antoniofrighetto
Copy link
Contributor Author

Unless I'm missing something, ValueTracking seems to be lacking support of considering the possible overflow coming from *.with.overflow intrinsics, as computeOverflow currently returns MayOverflow when is guaranteed not to overflow. I'll be taking a look.

// Fold the log2 ceil idiom:
// zext (ctpop(A) >u/!= 1) + (ctlz (A, true) ^ (BW - 1))
// -> BW - ctlz (A - 1, false)
const APInt *XorC;
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why did you merge the log2 ceil part into this function? I don't think they share common code.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

They do not, but they do both involve the ceil part, thus I thought it was nice to batch them together under a single foldCeilIdioms.

@dtcxzyw
Copy link
Member

dtcxzyw commented Jul 29, 2024

Unless I'm missing something, ValueTracking seems to be lacking support of considering the possible overflow coming from *.with.overflow intrinsics, as computeOverflow currently returns MayOverflow when is guaranteed not to overflow. I'll be taking a look.

Yeah, ValueTracking doesn't support this assumption. It only exists in some rust applications. See also rust-lang/hashbrown#509.

match(N, m_OneUse(m_Sub(m_APInt(C), m_Intrinsic<Intrinsic::ctlz>(
m_Value(DivOp1), m_Zero())))) &&
(*C == Div->getType()->getScalarSizeInBits() - 1) &&
IC.isKnownToBeAPowerOfTwo(DivOp1, true, 0, Div))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

OrZero needs to be false here. (Also comment the constant).

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Technically, I believe it should be allowed, but changed this to false.

Value *N;
const APInt *C;
if (match(Div, m_LShr(m_Value(DivOp0), m_Value(N))) &&
match(N, m_OneUse(m_Sub(m_APInt(C), m_Intrinsic<Intrinsic::ctlz>(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why does the sub need to be oneuse?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I just thought it could make sense to restrain the shifted amount as one-use only, although now I realize that N could be used for other log2 calculations, so maybe better to drop it.

dtcxzyw added a commit to dtcxzyw/llvm-opt-benchmark that referenced this pull request Jul 30, 2024
@antoniofrighetto
Copy link
Contributor Author

@dtcxzyw I think we should rebase to #84016 in order to see the actual impact over the opt-benchmark.

@dtcxzyw
Copy link
Member

dtcxzyw commented Jul 30, 2024

@nikic Does this pattern exist in real-world code? Can you provide an example without llvm.assume?

@nikic
Copy link
Contributor

nikic commented Aug 1, 2024

@dtcxzyw The motivation for this were the regressions we saw from #95556. I think most divideCeil() uses have a constant power of two RHS though, so they will produce a lshr pattern, not the udiv one handled here.

But it's possible that we don't actually know that the addition won't overflow in the hot cases. The key one is probably this in DataLayout:

  TypeSize getTypeStoreSize(Type *Ty) const {
    TypeSize BaseSize = getTypeSizeInBits(Ty);
    return {divideCeil(BaseSize.getKnownMinValue(), 8), BaseSize.isScalable()};
  }

This works on uint64_t and nothing tells us that it will not overflow :(

@antoniofrighetto
Copy link
Contributor Author

The key one is probably this in DataLayout:

  TypeSize getTypeStoreSize(Type *Ty) const {
    TypeSize BaseSize = getTypeSizeInBits(Ty);
    return {divideCeil(BaseSize.getKnownMinValue(), 8), BaseSize.isScalable()};
  }

This works on uint64_t and nothing tells us that it will not overflow :(

Would it make sense by any chance to change divideCeil to somehow take into account when we know it will not overflow? It seems there are a handful of such cases.

@nikic
Copy link
Contributor

nikic commented Aug 27, 2024

The key one is probably this in DataLayout:

  TypeSize getTypeStoreSize(Type *Ty) const {
    TypeSize BaseSize = getTypeSizeInBits(Ty);
    return {divideCeil(BaseSize.getKnownMinValue(), 8), BaseSize.isScalable()};
  }

This works on uint64_t and nothing tells us that it will not overflow :(

Would it make sense by any chance to change divideCeil to somehow take into account when we know it will not overflow? It seems there are a handful of such cases.

I think a good way to solve this one would be to invert the relationship between getTypeStoreSize and getTypeStoreSizeInBits and use alignToPowerOf2 + plain divide.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

[InstCombine] Optimize ceil division idiom
5 participants