-
Notifications
You must be signed in to change notification settings - Fork 12.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[InstCombine] Handle ceil division idiom #100977
base: main
Are you sure you want to change the base?
[InstCombine] Handle ceil division idiom #100977
Conversation
The expression `add (udiv (sub A, Bias), B), Bias` can be folded to `udiv (add A, B - 1), B)` when the sum between `A` and `B` is known not to overflow, and `Bias = A != 0`. Fixes: llvm#95652. Proof: https://alive2.llvm.org/ce/z/hiWHQA.
@llvm/pr-subscribers-llvm-transforms Author: Antonio Frighetto (antoniofrighetto) ChangesThe expression Fixes: #95652. Proof: https://alive2.llvm.org/ce/z/hiWHQA. Full diff: https://github.com/llvm/llvm-project/pull/100977.diff 2 Files Affected:
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
index 3bd086230cbec..aded338982fcf 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -1250,6 +1250,75 @@ static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
return nullptr;
}
+static Value *foldCeilIdioms(BinaryOperator &I, InstCombinerImpl &IC) {
+ assert(I.getOpcode() == Instruction::Add && "Expecting add instruction.");
+ Value *A, *B;
+ ICmpInst::Predicate Pred;
+ auto &ICB = IC.Builder;
+
+ // Fold the log2 ceil idiom:
+ // zext (ctpop(A) >u/!= 1) + (ctlz (A, true) ^ (BW - 1))
+ // -> BW - ctlz (A - 1, false)
+ const APInt *XorC;
+ if (match(&I,
+ m_c_Add(
+ m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)),
+ m_One())),
+ m_OneUse(m_ZExtOrSelf(m_OneUse(m_Xor(
+ m_OneUse(m_TruncOrSelf(m_OneUse(
+ m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))),
+ m_APInt(XorC))))))) &&
+ (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) &&
+ *XorC == A->getType()->getScalarSizeInBits() - 1) {
+ Value *Sub = ICB.CreateAdd(A, Constant::getAllOnesValue(A->getType()));
+ Value *Ctlz = ICB.CreateIntrinsic(Intrinsic::ctlz, {A->getType()},
+ {Sub, ICB.getFalse()});
+ Value *Ret = ICB.CreateSub(
+ ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()),
+ Ctlz, "", /*HasNUW*/ true, /*HasNSW*/ true);
+ return ICB.CreateZExtOrTrunc(Ret, I.getType());
+ }
+
+ // Fold the ceil division idiom:
+ // add (udiv (sub A, Bias), B), Bias
+ // -> udiv (add A, B - 1), B)
+ // with Bias = A != 0; A + B not to overflow
+ auto MatchDivision = [&IC](Instruction *Div, Value *&DivOp0, Value *&DivOp1) {
+ if (match(Div, m_UDiv(m_Value(DivOp0), m_Value(DivOp1))))
+ return true;
+
+ Value *N;
+ const APInt *C;
+ if (match(Div, m_LShr(m_Value(DivOp0), m_Value(N))) &&
+ match(N,
+ m_OneUse(m_Sub(m_APInt(C), m_Intrinsic<Intrinsic::ctlz>(
+ m_Specific(DivOp1), m_Zero())))) &&
+ (*C == Div->getType()->getScalarSizeInBits() - 1) &&
+ IC.isKnownToBeAPowerOfTwo(DivOp1, true, 0, Div))
+ return true;
+
+ return false;
+ };
+
+ Instruction *Div;
+ Value *Bias, *Sub;
+ if (match(&I, m_c_Add(m_Instruction(Div), m_Value(Bias))) &&
+ MatchDivision(Div, Sub, B) &&
+ match(Sub, m_Sub(m_Value(A), m_Value(Bias))) &&
+ match(Bias, m_ZExt(m_ICmp(Pred, m_Specific(A), m_ZeroInt()))) &&
+ Pred == ICmpInst::ICMP_NE && Bias->hasNUses(2)) {
+ WithCache<const Value *> LHSCache(A), RHSCache(B);
+ auto OR = IC.computeOverflowForUnsignedAdd(LHSCache, RHSCache, &I);
+ if (OR == OverflowResult::NeverOverflows) {
+ auto *BMinusOne =
+ ICB.CreateAdd(B, Constant::getAllOnesValue(I.getType()));
+ return ICB.CreateUDiv(ICB.CreateAdd(A, BMinusOne), B);
+ }
+ }
+
+ return nullptr;
+}
+
// Transform:
// (add A, (shl (neg B), Y))
// -> (sub A, (shl B, Y))
@@ -1785,30 +1854,8 @@ Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
{Builder.CreateOr(A, B)}));
- // Fold the log2_ceil idiom:
- // zext(ctpop(A) >u/!= 1) + (ctlz(A, true) ^ (BW - 1))
- // -->
- // BW - ctlz(A - 1, false)
- const APInt *XorC;
- ICmpInst::Predicate Pred;
- if (match(&I,
- m_c_Add(
- m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)),
- m_One())),
- m_OneUse(m_ZExtOrSelf(m_OneUse(m_Xor(
- m_OneUse(m_TruncOrSelf(m_OneUse(
- m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))),
- m_APInt(XorC))))))) &&
- (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) &&
- *XorC == A->getType()->getScalarSizeInBits() - 1) {
- Value *Sub = Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()));
- Value *Ctlz = Builder.CreateIntrinsic(Intrinsic::ctlz, {A->getType()},
- {Sub, Builder.getFalse()});
- Value *Ret = Builder.CreateSub(
- ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()),
- Ctlz, "", /*HasNUW*/ true, /*HasNSW*/ true);
- return replaceInstUsesWith(I, Builder.CreateZExtOrTrunc(Ret, I.getType()));
- }
+ if (Value *V = foldCeilIdioms(I, *this))
+ return replaceInstUsesWith(I, V);
if (Instruction *Res = foldSquareSumInt(I))
return Res;
diff --git a/llvm/test/Transforms/InstCombine/fold-ceil-div-idiom.ll b/llvm/test/Transforms/InstCombine/fold-ceil-div-idiom.ll
new file mode 100644
index 0000000000000..b9cc0fa6ce050
--- /dev/null
+++ b/llvm/test/Transforms/InstCombine/fold-ceil-div-idiom.ll
@@ -0,0 +1,253 @@
+; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 4
+; RUN: opt < %s -passes=instcombine -S | FileCheck %s
+
+define i8 @ceil_div_idiom(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT: [[WO:%.*]] = call { i8, i1 } @llvm.uadd.with.overflow.i8(i8 [[X]], i8 [[Y]])
+; CHECK-NEXT: [[OV:%.*]] = extractvalue { i8, i1 } [[WO]], 1
+; CHECK-NEXT: [[OV_NOT:%.*]] = xor i1 [[OV]], true
+; CHECK-NEXT: call void @llvm.assume(i1 [[OV_NOT]])
+; CHECK-NEXT: [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT: [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT: [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT: [[DIV:%.*]] = udiv i8 [[SUB]], [[Y]]
+; CHECK-NEXT: [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT: ret i8 [[ADD]]
+;
+ %wo = call {i8, i1} @llvm.uadd.with.overflow(i8 %x, i8 %y)
+ %ov = extractvalue {i8, i1} %wo, 1
+ %ov.not = xor i1 %ov, true
+ call void @llvm.assume(i1 %ov.not)
+
+ %nonzero = icmp ne i8 %x, 0
+ %bias = zext i1 %nonzero to i8
+ %sub = sub i8 %x, %bias
+ %div = udiv i8 %sub, %y
+ %add = add i8 %div, %bias
+ ret i8 %add
+}
+
+define i8 @ceil_div_idiom_2(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom_2(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT: [[OV_NOT:%.*]] = add nuw i8 [[X]], [[Y]]
+; CHECK-NEXT: [[TRUNC:%.*]] = trunc i8 [[OV_NOT]] to i1
+; CHECK-NEXT: call void @llvm.assume(i1 [[TRUNC]])
+; CHECK-NEXT: [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT: [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT: [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT: [[DIV:%.*]] = udiv i8 [[SUB]], [[Y]]
+; CHECK-NEXT: [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT: ret i8 [[ADD]]
+;
+ %ov.not = add nuw i8 %x, %y
+ %trunc = trunc i8 %ov.not to i1
+ call void @llvm.assume(i1 %trunc)
+
+ %nonzero = icmp ne i8 %x, 0
+ %bias = zext i1 %nonzero to i8
+ %sub = sub i8 %x, %bias
+ %div = udiv i8 %sub, %y
+ %add = add i8 %div, %bias
+ ret i8 %add
+}
+
+define i8 @ceil_div_idiom_with_lshr(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom_with_lshr(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT: [[WO:%.*]] = call { i8, i1 } @llvm.uadd.with.overflow.i8(i8 [[X]], i8 [[Y]])
+; CHECK-NEXT: [[OV:%.*]] = extractvalue { i8, i1 } [[WO]], 1
+; CHECK-NEXT: [[OV_NOT:%.*]] = xor i1 [[OV]], true
+; CHECK-NEXT: call void @llvm.assume(i1 [[OV_NOT]])
+; CHECK-NEXT: [[CTPOPULATION:%.*]] = call range(i8 0, 9) i8 @llvm.ctpop.i8(i8 [[Y]])
+; CHECK-NEXT: [[IS_POW_2:%.*]] = icmp eq i8 [[CTPOPULATION]], 1
+; CHECK-NEXT: call void @llvm.assume(i1 [[IS_POW_2]])
+; CHECK-NEXT: [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT: [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT: [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT: [[CTLZ:%.*]] = tail call range(i8 0, 9) i8 @llvm.ctlz.i8(i8 [[Y]], i1 true)
+; CHECK-NEXT: [[N:%.*]] = xor i8 [[CTLZ]], 7
+; CHECK-NEXT: [[DIV:%.*]] = lshr i8 [[SUB]], [[N]]
+; CHECK-NEXT: [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT: ret i8 [[ADD]]
+;
+ %wo = call {i8, i1} @llvm.uadd.with.overflow(i8 %x, i8 %y)
+ %ov = extractvalue {i8, i1} %wo, 1
+ %ov.not = xor i1 %ov, true
+ call void @llvm.assume(i1 %ov.not)
+
+ %ctpopulation = call i8 @llvm.ctpop.i8(i8 %y)
+ %is_pow_2 = icmp eq i8 %ctpopulation, 1
+ call void @llvm.assume(i1 %is_pow_2)
+
+ %nonzero = icmp ne i8 %x, 0
+ %bias = zext i1 %nonzero to i8
+ %sub = sub i8 %x, %bias
+ %ctlz = tail call i8 @llvm.ctlz.i8(i8 %y, i1 true)
+ %n = sub i8 7, %ctlz
+ %div = lshr i8 %sub, %n
+ %add = add i8 %div, %bias
+ ret i8 %add
+}
+
+define i8 @ceil_div_idiom_add_may_overflow(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom_add_may_overflow(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT: [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT: [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT: [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT: [[DIV:%.*]] = udiv i8 [[SUB]], [[Y]]
+; CHECK-NEXT: [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT: ret i8 [[ADD]]
+;
+ %nonzero = icmp ne i8 %x, 0
+ %bias = zext i1 %nonzero to i8
+ %sub = sub i8 %x, %bias
+ %div = udiv i8 %sub, %y
+ %add = add i8 %div, %bias
+ ret i8 %add
+}
+
+define i8 @ceil_div_idiom_multiuse_bias(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom_multiuse_bias(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT: [[WO:%.*]] = call { i8, i1 } @llvm.uadd.with.overflow.i8(i8 [[X]], i8 [[Y]])
+; CHECK-NEXT: [[OV:%.*]] = extractvalue { i8, i1 } [[WO]], 1
+; CHECK-NEXT: [[OV_NOT:%.*]] = xor i1 [[OV]], true
+; CHECK-NEXT: call void @llvm.assume(i1 [[OV_NOT]])
+; CHECK-NEXT: [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT: [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT: [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT: [[DIV:%.*]] = udiv i8 [[SUB]], [[Y]]
+; CHECK-NEXT: [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT: call void @use(i8 [[BIAS]])
+; CHECK-NEXT: ret i8 [[ADD]]
+;
+ %wo = call {i8, i1} @llvm.uadd.with.overflow(i8 %x, i8 %y)
+ %ov = extractvalue {i8, i1} %wo, 1
+ %ov.not = xor i1 %ov, true
+ call void @llvm.assume(i1 %ov.not)
+
+ %nonzero = icmp ne i8 %x, 0
+ %bias = zext i1 %nonzero to i8
+ %sub = sub i8 %x, %bias
+ %div = udiv i8 %sub, %y
+ %add = add i8 %div, %bias
+ call void @use(i8 %bias)
+ ret i8 %add
+}
+
+define i8 @ceil_div_idiom_with_lshr_not_power_2(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom_with_lshr_not_power_2(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT: [[WO:%.*]] = call { i8, i1 } @llvm.uadd.with.overflow.i8(i8 [[X]], i8 [[Y]])
+; CHECK-NEXT: [[OV:%.*]] = extractvalue { i8, i1 } [[WO]], 1
+; CHECK-NEXT: [[OV_NOT:%.*]] = xor i1 [[OV]], true
+; CHECK-NEXT: call void @llvm.assume(i1 [[OV_NOT]])
+; CHECK-NEXT: [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT: [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT: [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT: [[CTLZ:%.*]] = tail call range(i8 0, 9) i8 @llvm.ctlz.i8(i8 [[Y]], i1 true)
+; CHECK-NEXT: [[N:%.*]] = xor i8 [[CTLZ]], 7
+; CHECK-NEXT: [[DIV:%.*]] = lshr i8 [[SUB]], [[N]]
+; CHECK-NEXT: [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT: ret i8 [[ADD]]
+;
+ %wo = call {i8, i1} @llvm.uadd.with.overflow(i8 %x, i8 %y)
+ %ov = extractvalue {i8, i1} %wo, 1
+ %ov.not = xor i1 %ov, true
+ call void @llvm.assume(i1 %ov.not)
+
+ %nonzero = icmp ne i8 %x, 0
+ %bias = zext i1 %nonzero to i8
+ %sub = sub i8 %x, %bias
+ %ctlz = tail call i8 @llvm.ctlz.i8(i8 %y, i1 true)
+ %n = sub i8 7, %ctlz
+ %div = lshr i8 %sub, %n
+ %add = add i8 %div, %bias
+ ret i8 %add
+}
+
+define i8 @ceil_div_idiom_with_lshr_wrong_bw(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom_with_lshr_wrong_bw(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT: [[WO:%.*]] = call { i8, i1 } @llvm.uadd.with.overflow.i8(i8 [[X]], i8 [[Y]])
+; CHECK-NEXT: [[OV:%.*]] = extractvalue { i8, i1 } [[WO]], 1
+; CHECK-NEXT: [[OV_NOT:%.*]] = xor i1 [[OV]], true
+; CHECK-NEXT: call void @llvm.assume(i1 [[OV_NOT]])
+; CHECK-NEXT: [[CTPOPULATION:%.*]] = call range(i8 0, 9) i8 @llvm.ctpop.i8(i8 [[Y]])
+; CHECK-NEXT: [[IS_POW_2:%.*]] = icmp eq i8 [[CTPOPULATION]], 1
+; CHECK-NEXT: call void @llvm.assume(i1 [[IS_POW_2]])
+; CHECK-NEXT: [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT: [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT: [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT: [[CTLZ:%.*]] = tail call range(i8 0, 9) i8 @llvm.ctlz.i8(i8 [[Y]], i1 true)
+; CHECK-NEXT: [[N:%.*]] = sub nuw nsw i8 8, [[CTLZ]]
+; CHECK-NEXT: [[DIV:%.*]] = lshr i8 [[SUB]], [[N]]
+; CHECK-NEXT: [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT: ret i8 [[ADD]]
+;
+ %wo = call {i8, i1} @llvm.uadd.with.overflow(i8 %x, i8 %y)
+ %ov = extractvalue {i8, i1} %wo, 1
+ %ov.not = xor i1 %ov, true
+ call void @llvm.assume(i1 %ov.not)
+
+ %ctpopulation = call i8 @llvm.ctpop.i8(i8 %y)
+ %is_pow_2 = icmp eq i8 %ctpopulation, 1
+ call void @llvm.assume(i1 %is_pow_2)
+
+ %nonzero = icmp ne i8 %x, 0
+ %bias = zext i1 %nonzero to i8
+ %sub = sub i8 %x, %bias
+ %ctlz = tail call i8 @llvm.ctlz.i8(i8 %y, i1 true)
+ %n = sub i8 8, %ctlz
+ %div = lshr i8 %sub, %n
+ %add = add i8 %div, %bias
+ ret i8 %add
+}
+
+define i8 @ceil_div_idiom_with_lshr_multiuse_n(i8 %x, i8 %y) {
+; CHECK-LABEL: define i8 @ceil_div_idiom_with_lshr_multiuse_n(
+; CHECK-SAME: i8 [[X:%.*]], i8 [[Y:%.*]]) {
+; CHECK-NEXT: [[WO:%.*]] = call { i8, i1 } @llvm.uadd.with.overflow.i8(i8 [[X]], i8 [[Y]])
+; CHECK-NEXT: [[OV:%.*]] = extractvalue { i8, i1 } [[WO]], 1
+; CHECK-NEXT: [[OV_NOT:%.*]] = xor i1 [[OV]], true
+; CHECK-NEXT: call void @llvm.assume(i1 [[OV_NOT]])
+; CHECK-NEXT: [[CTPOPULATION:%.*]] = call range(i8 0, 9) i8 @llvm.ctpop.i8(i8 [[Y]])
+; CHECK-NEXT: [[IS_POW_2:%.*]] = icmp eq i8 [[CTPOPULATION]], 1
+; CHECK-NEXT: call void @llvm.assume(i1 [[IS_POW_2]])
+; CHECK-NEXT: [[NONZERO:%.*]] = icmp ne i8 [[X]], 0
+; CHECK-NEXT: [[BIAS:%.*]] = zext i1 [[NONZERO]] to i8
+; CHECK-NEXT: [[SUB:%.*]] = sub i8 [[X]], [[BIAS]]
+; CHECK-NEXT: [[CTLZ:%.*]] = tail call range(i8 0, 9) i8 @llvm.ctlz.i8(i8 [[Y]], i1 true)
+; CHECK-NEXT: [[N:%.*]] = sub nuw nsw i8 8, [[CTLZ]]
+; CHECK-NEXT: [[DIV:%.*]] = lshr i8 [[SUB]], [[N]]
+; CHECK-NEXT: call void @use(i8 [[N]])
+; CHECK-NEXT: [[ADD:%.*]] = add i8 [[DIV]], [[BIAS]]
+; CHECK-NEXT: ret i8 [[ADD]]
+;
+ %wo = call {i8, i1} @llvm.uadd.with.overflow(i8 %x, i8 %y)
+ %ov = extractvalue {i8, i1} %wo, 1
+ %ov.not = xor i1 %ov, true
+ call void @llvm.assume(i1 %ov.not)
+
+ %ctpopulation = call i8 @llvm.ctpop.i8(i8 %y)
+ %is_pow_2 = icmp eq i8 %ctpopulation, 1
+ call void @llvm.assume(i1 %is_pow_2)
+
+ %nonzero = icmp ne i8 %x, 0
+ %bias = zext i1 %nonzero to i8
+ %sub = sub i8 %x, %bias
+ %ctlz = tail call i8 @llvm.ctlz.i8(i8 %y, i1 true)
+ %n = sub i8 8, %ctlz
+ %div = lshr i8 %sub, %n
+ call void @use(i8 %n)
+ %add = add i8 %div, %bias
+ ret i8 %add
+}
+
+declare { i8, i1 } @llvm.uadd.with.overflow.i8(i8, i8)
+declare i8 @llvm.ctpop.i8(i8)
+declare void @llvm.assume(i1)
+declare void @use(i8)
|
Unless I'm missing something, ValueTracking seems to be lacking support of considering the possible overflow coming from *.with.overflow intrinsics, as computeOverflow currently returns MayOverflow when is guaranteed not to overflow. I'll be taking a look. |
// Fold the log2 ceil idiom: | ||
// zext (ctpop(A) >u/!= 1) + (ctlz (A, true) ^ (BW - 1)) | ||
// -> BW - ctlz (A - 1, false) | ||
const APInt *XorC; |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Why did you merge the log2 ceil part into this function? I don't think they share common code.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
They do not, but they do both involve the ceil part, thus I thought it was nice to batch them together under a single foldCeilIdioms
.
Yeah, ValueTracking doesn't support this assumption. It only exists in some rust applications. See also rust-lang/hashbrown#509. |
match(N, m_OneUse(m_Sub(m_APInt(C), m_Intrinsic<Intrinsic::ctlz>( | ||
m_Value(DivOp1), m_Zero())))) && | ||
(*C == Div->getType()->getScalarSizeInBits() - 1) && | ||
IC.isKnownToBeAPowerOfTwo(DivOp1, true, 0, Div)) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
OrZero needs to be false here. (Also comment the constant).
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Technically, I believe it should be allowed, but changed this to false.
Value *N; | ||
const APInt *C; | ||
if (match(Div, m_LShr(m_Value(DivOp0), m_Value(N))) && | ||
match(N, m_OneUse(m_Sub(m_APInt(C), m_Intrinsic<Intrinsic::ctlz>( |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Why does the sub
need to be oneuse
?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I just thought it could make sense to restrain the shifted amount as one-use only, although now I realize that N
could be used for other log2 calculations, so maybe better to drop it.
@nikic Does this pattern exist in real-world code? Can you provide an example without |
@dtcxzyw The motivation for this were the regressions we saw from #95556. I think most divideCeil() uses have a constant power of two RHS though, so they will produce a lshr pattern, not the udiv one handled here. But it's possible that we don't actually know that the addition won't overflow in the hot cases. The key one is probably this in DataLayout:
This works on uint64_t and nothing tells us that it will not overflow :( |
Would it make sense by any chance to change |
I think a good way to solve this one would be to invert the relationship between getTypeStoreSize and getTypeStoreSizeInBits and use alignToPowerOf2 + plain divide. |
The expression
add (udiv (sub A, Bias), B), Bias
can be folded toudiv (add A, B - 1), B)
when the sum betweenA
andB
is known not to overflow, andBias = A != 0
.Fixes: #95652.
Proof: https://alive2.llvm.org/ce/z/hiWHQA.