An openaps plugin for predicting glucose effects and trends from historical input
This tool is highly experimental and intended for education, not intended for therapy.
$ sudo easy_install openapscontrib.predict
Clone the repository and link via setuptools:
$ python setup.py develop
$ openaps vendor add openapscontrib.predict
$ openaps device add predict predict
Use the device help menu to see available commands.
$ openaps use predict -h
usage: openaps-use predict [-h] USAGE ...
optional arguments:
-h, --help show this help message and exit
## Device predict:
vendor openapscontrib.predict
predict - tools for predicting glucose trends
USAGE Usage Details
glucose Predict glucose. This is a convenience shortcut for
insulin and carb effect prediction.
glucose_from_effects
Predict glucose from one or more effect schedules
scheiner_carb_effect
Predict carb effect on glucose, using the Scheiner GI
curve
walsh_insulin_effect
Predict insulin effect on glucose, using Walsh's IOB
algorithm
walsh_iob Predict IOB using Walsh's algorithm
Use the command help menu to see available arguments.
usage: openaps-use predict glucose [-h] [--settings [SETTINGS]]
[--insulin-action-curve [{3,4,5,6}]]
[--insulin-sensitivities INSULIN_SENSITIVITIES]
[--carb-ratios CARB_RATIOS]
[--basal-dosing-end [BASAL_DOSING_END]]
pump-history glucose
Predict glucose. This is a convenience shortcut for insulin and carb effect prediction.
positional arguments:
pump-history JSON-encoded pump history data file, normalized by
openapscontrib.mmhistorytools
glucose JSON-encoded glucose data file in reverse-
chronological order
optional arguments:
-h, --help show this help message and exit
--settings [SETTINGS]
JSON-encoded pump settings file, optional if
--insulin-action-curve is set
--insulin-action-curve [{3,4,5,6}]
Insulin action curve, optional if --settings is set
--insulin-sensitivities INSULIN_SENSITIVITIES
JSON-encoded insulin sensitivities schedule file
--carb-ratios CARB_RATIOS
JSON-encoded carb ratio schedule file
--basal-dosing-end [BASAL_DOSING_END]
The timestamp at which temp basal dosing should be
assumed to end, as a JSON-encoded pump clock file
Add a report flow to predict future glucose from pump history:
$ openaps report add insulin_effect_without_future_basal.json JSON predict walsh_insulin_effect \
normalize_history.json \
--settings read_settings.json \
--insulin-sensitivities read_insulin_sensitivies.json \
--basal-dosing-end read_clock.json
$ openaps report add carb_effect.json JSON predict scheiner_carb_effect \
normalize_history.json \
--carb-ratios read_carb_ratios.json \
--insulin-sensitivities read_insulin_sensitivies.json \
--absorption-time 180
$ openaps report add predict_glucose_without_future_basal JSON predict glucose_from_effects \
insulin_effect_without_future_basal.json \
carb_effect.json \
--glucose clean_glucose.json
Contributions are welcome and encouraged in the form of bugs and pull requests.
Unit tests can be run manually via setuptools. This is also handled by TravisCI after opening a pull request.
$ python setup.py test