This repository contains an R package providing programmatic access to the GBM model described in the in-review paper:
Johnson, J.M., Eyelade D., Clarke K.C, Singh-Mohudpur, J. (2021) “Characterizing Reach-level Empirical Roughness Along the National Hydrography Network: Developing DEM-based Synthetic Rating Curves.”
For more information, see: nhd-roughness.
# One of the below will install the development version
# Using `remotes`:
remotes::install_github("LynkerIntel/roughness-api")
# Or, using `pak`:
pak::pkg_install("LynkerIntel/roughness-api")
# Attaching the package will load the model into memory
# and prompt the user if the model is not in the local cache
library(hydrofab.roughness)
my_data <- data.frame(
pathlength = 2611.030,
arbolatesu = 284.351,
lengthkm = 2.43,
areasqkm = 4.3308,
slope = 0.00074773
)
# This will also load the model if `library` was not called above.
prediction <- hydrofab.roughness::hr_predict(my_data)
#> Using 40000 trees...
prediction
#> .pred
#> 1 0.2793853
# Alternatively, we can augment our inital data with the prediction values
hydrofab.roughness::hr_augment(my_data)
#> Using 40000 trees...
#>
#> pathlength arbolatesu lengthkm areasqkm slope .pred
#> 1 2611.03 284.351 2.43 4.3308 0.00074773 0.2793853