Skip to content

lynker-spatial/hydrofabricML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GBM-based Roughness Prediction

This repository contains an R package providing programmatic access to the GBM model described in the in-review paper:

Johnson, J.M., Eyelade D., Clarke K.C, Singh-Mohudpur, J. (2021) “Characterizing Reach-level Empirical Roughness Along the National Hydrography Network: Developing DEM-based Synthetic Rating Curves.”

For more information, see: nhd-roughness.

Installation

# One of the below will install the development version

# Using `remotes`:
remotes::install_github("LynkerIntel/roughness-api")

# Or, using `pak`:
pak::pkg_install("LynkerIntel/roughness-api")

Usage

# Attaching the package will load the model into memory
# and prompt the user if the model is not in the local cache
library(hydrofab.roughness)

my_data <- data.frame(
    pathlength = 2611.030, 
    arbolatesu = 284.351, 
    lengthkm =  2.43, 
    areasqkm = 4.3308, 
    slope = 0.00074773
)

# This will also load the model if `library` was not called above.
prediction <- hydrofab.roughness::hr_predict(my_data)
#> Using 40000 trees...

prediction
#>       .pred
#> 1 0.2793853

# Alternatively, we can augment our inital data with the prediction values
hydrofab.roughness::hr_augment(my_data)
#> Using 40000 trees...
#> 
#>   pathlength arbolatesu lengthkm areasqkm      slope     .pred
#> 1    2611.03    284.351     2.43   4.3308 0.00074773 0.2793853

About

No description, website, or topics provided.

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published