Skip to content

m0hithreddy/rpyc-mem

Repository files navigation

RPyC Mem

(RPyC) (Mem)ory

Overview

  • RPyC-Mem is a light weight shared memory alternative for Python implemented using RPyC
  • RPyC-Mem has a ready to run service, which hosts network based shared memory to be consumed by different processes.
  • RPyC-Mem has proxy classes to interact with the shared memory objects effectively.

Getting Started

  1. Install RPyC-Mem from pypi

    pip install rpyc-mem
  2. Run the RPyC-Mem server

    from rpyc_mem.service import RpycMemService
    
    rs = RpycMemService('localhost', 18813)
    rs.run()
  3. Share data between processes

    Client 1:

    Using RPyC Memory Session

    from rpyc_mem.session import RpycMemSession
    
    rses = RpycMemSession('localhost', 18813)
    rm = rses.rmem('unique-key', robj_gen=lambda: rses.rmod().list([1, 2]))
    
    print(rm)    # [1, 2]

    Client 2:

    Using underlying RPyC Memory classes

    from rpyc_mem.connect import RpycMemConnect
    from rpyc_mem.client import RemoteModule, RpycMem
    
    rc = RpycMemConnect('localhost', 18813)
    rp = RemoteModule(rc)
    rm = RpycMem(rc, 'unique-key', robj_gen=lambda: rp().list([1, 2, 3]))
    
    print(rm)    # [1, 2]
    rm.append(3)

    Client 1 continued... :

    print(rm)    # [1, 2, 3]
  4. For more details, check out the API-Reference, User-Guide