Skip to content

magniff/watch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Watch ๏_๏

Build Status codecov

PyPI version

This very basic library I found myself reimplementing over and over again for different projects, so I finaly decided to put an end to such thankless monkey job, duuuuh. Long story short, this piece of code represents a tiny framework aimed to build object's attributes validators.

Motivation

The main goal of that library is to get rid of pesky validation code:

from collections.abc import Mapping

class MyClass:
    def __init__(self, mappings):
       # "mappings" value is expected to be a list of any mappings from
       # int numbers to strings. Mind how noisy the code becomes.
       assert isinstance(mappings, list)
       for mapping in mappings:
           assert isinstance(mapping, Mapping)
           for key, value in mapping.items():
               assert isinstance(key, int)
               assert isinstance(value, str)
       self.mappings = mappings

Also, mind that you will have to perform these assertions each time this mappings attribute is set. watch provides a much cleaner way to define an attribute validator:

import watch
from watch.builtins import Container, InstanceOf

class MyClass(watch.WatchMe):
     mappings = Container(InstanceOf(int) >> InstanceOf(str), container=list)

     def __init__(self, mappings):
        # now self.mappings is guaranteed to comply a given spec at
        # program runtime, atleast at __setattr__ time
        self.mappings = mappings

Here Container invocation defines a validator for surrounding list object and >> constructs a validator for a dict like object, that maps ints to strings. Looks straightforward enough, right?

If that makes sense to you, have a look on watch library.

Installation

You are very welcome to clone this repo and perform installation by running setup.py script. This code also available in pypi and goes by name watch, so to get it from there just run pip install watch.

How it is done

Nothing special, really, just a pinch of good old metaprogramming and attribute's descriptor magic, namely watch is comprised out of:

  • the core module, where a bunch of base classes like WatchMe and PredicateController got defined.
  • and the builtins module, that defines a set of handy validators like Just, Container, Mapping, etc. Each validator provides a callable method predicate(value) -> True/False. This callable gets invoked at validation time to decide whether the value complies the spec.

Validators

Did I tell you that watch is a microframework? No? So, it is, meaning that you should be able to quickly hack together a set of useful checkers without any external help. Nevertherless, watch comes with a set of predefined validators, that are written in a "monadic" style. Here are some:

from watch.builtins import *
  • Predicate is an unary constructor, that takes an unary function as its single argument and returns function's result interpreted in a boolean context:
>>> Predicate(lambda value: value > 0).predicate(10)
True
>>> Predicate(lambda value: value > 0).predicate(-10)
False
  • Just is an unary constructor, that is super trivial:
>>> Just("hello").predicate("hello")
True
>>> Just("hello").predicate(10)
False

It also can take a list of values as an initialization set:

>>> Just("hello", "world").predicate("hello")
True
>>> Just("hello", "world").predicate("world")
True
>>> Just("hello", "world").predicate("more")
False
  • InstanceOf and SubclassOf are nary constructors that do exactly what you expect. The nice thing about builtin validators is that they are also controlled by watch on their own, e.g.
>>> InstanceOf(int).predicate(10)
True
>>> InstanceOf(10)
AttributeError: It is not allowed to initialize InstanceOf object with a value of (10,).
  • Container is an unary constructor that wraps an arbitrary validator and yields a validator for iterable, each element of which will be validated with this inner validator, e.g.
>>> Container(InstanceOf(int, str)).predicate(["hello", 1])
True
>>> Container(InstanceOf(int, str)).predicate(["hello", 1.0])
False

You can also provide an exact type of the container, e.g.

>>> Container(InstanceOf(int, str), container=list).predicate([1,2])
True
>>> Container(InstanceOf(int, str), container=tuple).predicate([1,2])
False
  • Mapping is a binary constructor that is very similar to the Container one, yet taylored for mappings instead of iterables, e.g.
>>> Mapping(InstanceOf(int), InstanceOf(str)).predicate({1: "hello"})
True
>>> Mapping(InstanceOf(int), InstanceOf(str)).predicate({1: 1})
False

Also there is a magic method based syntax available:

>>> (InstanceOf(int) >> InstanceOf(str)).predicate({1: "hello"})
  • Not is an unary constructor that wraps an arbitrary validator and negates its result, e.g.
>>> Not(InstanceOf(int)).predicate(10)
False
>>> Not(InstanceOf(int)).predicate("hello")
True

Also there is a magic method based syntax available:

>>> (~InstanceOf(int)).predicate(10)
False
>>> (~InstanceOf(int)).predicate("hello")
True
  • And, Or, Xor are nary constructors, that runs inner validators and performs corresponding logical operation. Magic method based syntax available:
>>> (InstanceOf(int) | Just("hello")).predicate(10)
True
>>> (InstanceOf(int) | Just("hello")).predicate("hello")
True
>>> (InstanceOf(int) | Just("hello")).predicate("world")
False
>>> # And so on
  • GtThen, GtEqThen, LtThen, LtEqThen are unary constructors, e.g.
>>> GtThen(10).predicate(2)
False
>>> GtThen(10).predicate(20)
True

This validators are usually combined with other validators, e.g.

>>> And(InstanceOf(int), GtThen(10)).predicate(20)
True

or, using magic syntax:

>>> (InstanceOf(int) > 10).predicate(20)
True
>>> (InstanceOf(int) > 10).predicate(20.0)
False

Disabling watch

You can disable validation for a particular set of types and even instances. It is done via manipulation of keep_eye_on_me attribute of pretty much any watch instance.

>>> import watch
>>> # foo accept no value whatsoever
>>> class SomeClass(watch.WatchMe):
...     foo = watch.builtins.Nothing
... 
>>> s = SomeClass()
>>> s.foo = 10
AttributeError: Failed to set attribute 'foo' of object <SomeClass object at 0x7f...> to be 10.
>>> # Disable validation for this particular instance
>>> s.keep_eye_on_me = False
>>> # Now foo accepts values
>>> s.foo = 10
>>> # Note, that the flag value does not leak to other instances
>>> s1 = SomeClass()
>>> s1.foo = 10
AttributeError: Failed to set attribute 'foo' of object <SomeClass object at 0x7f...> to be 10.

Limitations

Note, that the actual validation is based on __set__ method of attribute descriptor object (see descriptor protocol documentation on python.org web site). Having that said it should be rather clear, that validation of mutable data is (in general) impossible. Condsider following example:

from watch import WatchMe
from watch.builtins import Container, InstanceOf

class CouldNotBreak(watch.WatchMe):
   # only iterables of ints are allowed, right?
   attribute = Container(InstanceOf(int))

instance = CouldNotBreak()

# that works, as expected
instance.attribute = [1,2,3]

# `watch` is kind of OK with following
instance.attribute.append('hello world')

Sure you could revalidate attribute by simply reseting it, just like:

instance.attribute = instance.attribute

But that looks weird indeed.