-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
313 lines (271 loc) · 14.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
import sys
import tensorflow as tf
from datetime import datetime
import ujson as json
import numpy as np
from tqdm import tqdm
sys.path.append(os.path.join(os.getcwd(), 'src'))
from prepro import prepro as preprocess
from model import Model
from demo import Demo
from util import get_record_parser, convert_tokens, evaluate, get_batch_dataset, get_dataset
def get_new_folder():
return datetime.now().strftime("%y-%d-%m-%H-%M-%S")
def get_flags():
flags = tf.flags
home = os.getcwd()
train_file = os.path.join(home, "datasets", "squad", "train-v1.1.json")
dev_file = os.path.join(home, "datasets", "squad", "dev-v1.1.json")
test_file = os.path.join(home, "datasets", "squad", "dev-v1.1.json")
glove_word_file = os.path.join(home, "datasets", "glove", "glove.840B.300d.txt")
train_dir = "train"
# model_name = get_new_folder()
model_name = "FRC"
dir_name = os.path.join(train_dir, model_name)
if not os.path.exists(train_dir):
os.mkdir(train_dir)
if not os.path.exists(os.path.join(os.getcwd(),dir_name)):
os.mkdir(os.path.join(os.getcwd(),dir_name))
target_dir = "data"
log_dir = os.path.join(dir_name, "event")
save_dir = os.path.join(dir_name, "model")
answer_dir = os.path.join(dir_name, "answer")
train_record_file = os.path.join(target_dir, "train.tfrecords")
dev_record_file = os.path.join(target_dir, "dev.tfrecords")
test_record_file = os.path.join(target_dir, "test.tfrecords")
word_emb_file = os.path.join(target_dir, "word_emb.json")
char_emb_file = os.path.join(target_dir, "char_emb.json")
train_eval = os.path.join(target_dir, "train_eval.json")
dev_eval = os.path.join(target_dir, "dev_eval.json")
test_eval = os.path.join(target_dir, "test_eval.json")
dev_meta = os.path.join(target_dir, "dev_meta.json")
test_meta = os.path.join(target_dir, "test_meta.json")
word_dictionary = os.path.join(target_dir, "word_dictionary.json")
char_dictionary = os.path.join(target_dir, "char_dictionary.json")
answer_file = os.path.join(answer_dir, "answer.json")
if not os.path.exists(target_dir):
os.makedirs(target_dir)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if not os.path.exists(answer_dir):
os.makedirs(answer_dir)
flags.DEFINE_string("mode", "train", "Running mode train/debug/test")
flags.DEFINE_string("target_dir", target_dir, "Target directory for out data")
flags.DEFINE_string("log_dir", log_dir, "Directory for tf event")
flags.DEFINE_string("save_dir", save_dir, "Directory for saving model")
flags.DEFINE_string("train_file", train_file, "Train source file")
flags.DEFINE_string("dev_file", dev_file, "Dev source file")
flags.DEFINE_string("test_file", test_file, "Test source file")
flags.DEFINE_string("glove_word_file", glove_word_file, "Glove word embedding source file")
flags.DEFINE_string("train_record_file", train_record_file, "Out file for train data")
flags.DEFINE_string("dev_record_file", dev_record_file, "Out file for dev data")
flags.DEFINE_string("test_record_file", test_record_file, "Out file for test data")
flags.DEFINE_string("word_emb_file", word_emb_file, "Out file for word embedding")
flags.DEFINE_string("char_emb_file", char_emb_file, "Out file for char embedding")
flags.DEFINE_string("train_eval_file", train_eval, "Out file for train eval")
flags.DEFINE_string("dev_eval_file", dev_eval, "Out file for dev eval")
flags.DEFINE_string("test_eval_file", test_eval, "Out file for test eval")
flags.DEFINE_string("dev_meta", dev_meta, "Out file for dev meta")
flags.DEFINE_string("test_meta", test_meta, "Out file for test meta")
flags.DEFINE_string("answer_file", answer_file, "Out file for answer")
flags.DEFINE_string("word_dictionary", word_dictionary, "Word dictionary")
flags.DEFINE_string("char_dictionary", char_dictionary, "Character dictionary")
flags.DEFINE_integer("glove_char_size", 94, "Corpus size for Glove")
flags.DEFINE_integer("glove_word_size", int(2.2e6), "Corpus size for Glove")
flags.DEFINE_integer("glove_dim", 300, "Embedding dimension for Glove")
flags.DEFINE_integer("char_dim", 64, "Embedding dimension for char")
flags.DEFINE_integer("para_limit", 400, "Limit length for paragraph")
flags.DEFINE_integer("ques_limit", 50, "Limit length for question")
flags.DEFINE_integer("ans_limit", 30, "Limit length for answers")
flags.DEFINE_integer("test_para_limit", 1000, "Limit length for paragraph in test file")
flags.DEFINE_integer("test_ques_limit", 100, "Limit length for question in test file")
flags.DEFINE_integer("char_limit", 16, "Limit length for character")
flags.DEFINE_integer("word_count_limit", -1, "Min count for word")
flags.DEFINE_integer("char_count_limit", -1, "Min count for char")
flags.DEFINE_integer("capacity", 15000, "Batch size of dataset shuffle")
flags.DEFINE_integer("num_threads", 4, "Number of threads in input pipeline")
flags.DEFINE_boolean("is_bucket", False, "build bucket batch iterator or not")
flags.DEFINE_list("bucket_range", [40, 401, 40], "the range of bucket")
flags.DEFINE_integer("batch_size", 32, "Batch size")
flags.DEFINE_integer("num_steps", 60000, "Number of steps")
flags.DEFINE_integer("checkpoint", 1000, "checkpoint to save and evaluate the model")
flags.DEFINE_integer("period", 100, "period to save batch loss")
flags.DEFINE_integer("val_num_batches", 150, "Number of batches to evaluate the model")
flags.DEFINE_float("dropout", 0.1, "Dropout prob across the layers")
flags.DEFINE_float("grad_clip", 5.0, "Global Norm gradient clipping rate")
flags.DEFINE_float("learning_rate", 0.001, "Learning rate")
flags.DEFINE_float("decay", 0.9999, "Exponential moving average decay")
flags.DEFINE_float("l2_norm", 3e-7, "L2 norm scale")
flags.DEFINE_integer("hidden", 96, "Hidden size")
flags.DEFINE_integer("num_heads", 1, "Number of heads in self attention")
flags.DEFINE_integer("early_stop", 10, "Checkpoints for early stop")
# Extensions (Uncomment corresponding code in download.sh to download the required data)
glove_char_file = os.path.join(home, "data", "glove", "glove.840B.300d-char.txt")
flags.DEFINE_string("glove_char_file", glove_char_file, "Glove character embedding source file")
flags.DEFINE_boolean("pretrained_char", False, "Whether to use pretrained character embedding")
fasttext_file = os.path.join(home, "data", "fasttext", "wiki-news-300d-1M.vec")
flags.DEFINE_string("fasttext_file", fasttext_file, "Fasttext word embedding source file")
flags.DEFINE_boolean("fasttext", False, "Whether to use fasttext")
return flags
def train(config):
with open(config.word_emb_file, "r") as fh:
word_mat = np.array(json.load(fh), dtype=np.float32)
with open(config.char_emb_file, "r") as fh:
char_mat = np.array(json.load(fh), dtype=np.float32)
with open(config.train_eval_file, "r") as fh:
train_eval_file = json.load(fh)
with open(config.dev_eval_file, "r") as fh:
dev_eval_file = json.load(fh)
with open(config.dev_meta, "r") as fh:
meta = json.load(fh)
dev_total = meta["total"]
print("Building model...")
parser = get_record_parser(config)
graph = tf.Graph()
with graph.as_default() as g:
train_dataset = get_batch_dataset(config.train_record_file, parser, config)
dev_dataset = get_dataset(config.dev_record_file, parser, config)
handle = tf.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(
handle, train_dataset.output_types, train_dataset.output_shapes)
train_iterator = train_dataset.make_one_shot_iterator()
dev_iterator = dev_dataset.make_one_shot_iterator()
model = Model(config, iterator, word_mat, char_mat, graph = g)
sess_config = tf.ConfigProto(allow_soft_placement=True)
sess_config.gpu_options.allow_growth = True
loss_save, patience, best_f1, best_em = 100.0, 0, 0., 0.
with tf.Session(config=sess_config) as sess:
writer = tf.summary.FileWriter(config.log_dir, graph=graph)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
train_handle = sess.run(train_iterator.string_handle())
dev_handle = sess.run(dev_iterator.string_handle())
if os.path.exists(os.path.join(config.save_dir, "checkpoint")):
saver.restore(sess, tf.train.latest_checkpoint(config.save_dir))
global_step = max(sess.run(model.global_step), 1)
for _ in tqdm(range(global_step, config.num_steps + 1)):
global_step = sess.run(model.global_step) + 1
loss, train_op = sess.run([model.loss, model.train_op], feed_dict={
handle: train_handle, model.dropout: config.dropout})
if global_step % config.period == 0:
loss_sum = tf.Summary(value=[tf.Summary.Value(
tag="model/loss", simple_value=loss), ])
writer.add_summary(loss_sum, global_step)
if global_step % config.checkpoint == 0:
_, summ = evaluate_batch(
model, config.val_num_batches, train_eval_file, sess, "train", handle, train_handle)
for s in summ:
writer.add_summary(s, global_step)
metrics, summ = evaluate_batch(
model, dev_total // config.batch_size + 1, dev_eval_file, sess, "dev", handle, dev_handle)
dev_f1 = metrics["f1"]
dev_em = metrics["exact_match"]
if dev_f1 < best_f1 and dev_em < best_em:
patience += 1
if patience > config.early_stop:
break
else:
patience = 0
best_em = max(best_em, dev_em)
best_f1 = max(best_f1, dev_f1)
for s in summ:
writer.add_summary(s, global_step)
writer.flush()
filename = os.path.join(
config.save_dir, "model_{}.ckpt".format(global_step))
saver.save(sess, filename)
def evaluate_batch(model, num_batches, eval_file, sess, data_type, handle, str_handle):
answer_dict = {}
losses = []
for _ in tqdm(range(1, num_batches + 1)):
qa_id, loss, yp1, yp2, = sess.run(
[model.qa_id, model.loss, model.yp1, model.yp2], feed_dict={handle: str_handle})
answer_dict_, _ = convert_tokens(
eval_file, qa_id.tolist(), yp1.tolist(), yp2.tolist())
answer_dict.update(answer_dict_)
losses.append(loss)
loss = np.mean(losses)
metrics = evaluate(eval_file, answer_dict)
metrics["loss"] = loss
loss_sum = tf.Summary(value=[tf.Summary.Value(
tag="{}/loss".format(data_type), simple_value=metrics["loss"]), ])
f1_sum = tf.Summary(value=[tf.Summary.Value(
tag="{}/f1".format(data_type), simple_value=metrics["f1"]), ])
em_sum = tf.Summary(value=[tf.Summary.Value(
tag="{}/em".format(data_type), simple_value=metrics["exact_match"]), ])
return metrics, [loss_sum, f1_sum, em_sum]
def demo(config):
with open(config.word_emb_file, "r") as fh:
word_mat = np.array(json.load(fh), dtype=np.float32)
with open(config.char_emb_file, "r") as fh:
char_mat = np.array(json.load(fh), dtype=np.float32)
with open(config.test_meta, "r") as fh:
meta = json.load(fh)
model = Model(config, None, word_mat, char_mat, trainable=False, demo = True)
demo = Demo(model, config)
def test(config):
with open(config.word_emb_file, "r") as fh:
word_mat = np.array(json.load(fh), dtype=np.float32)
with open(config.char_emb_file, "r") as fh:
char_mat = np.array(json.load(fh), dtype=np.float32)
with open(config.test_eval_file, "r") as fh:
eval_file = json.load(fh)
with open(config.test_meta, "r") as fh:
meta = json.load(fh)
total = meta["total"]
graph = tf.Graph()
print("Loading model...")
with graph.as_default() as g:
test_batch = get_dataset(config.test_record_file, get_record_parser(
config, is_test=True), config).make_one_shot_iterator()
model = Model(config, test_batch, word_mat, char_mat, trainable=False, graph = g)
sess_config = tf.ConfigProto(allow_soft_placement=True)
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint(config.save_dir))
if config.decay < 1.0:
sess.run(model.assign_vars)
losses = []
answer_dict = {}
remapped_dict = {}
for step in tqdm(range(total // config.batch_size + 1)):
qa_id, loss, yp1, yp2 = sess.run(
[model.qa_id, model.loss, model.yp1, model.yp2])
answer_dict_, remapped_dict_ = convert_tokens(
eval_file, qa_id.tolist(), yp1.tolist(), yp2.tolist())
answer_dict.update(answer_dict_)
remapped_dict.update(remapped_dict_)
losses.append(loss)
loss = np.mean(losses)
metrics = evaluate(eval_file, answer_dict)
with open(config.answer_file, "w") as fh:
json.dump(remapped_dict, fh)
print("Exact Match: {}, F1: {}".format(
metrics['exact_match'], metrics['f1']))
def main(_):
flags = get_flags()
config = flags.FLAGS
if config.mode == "train":
train(config)
elif config.mode == "preprocess":
prepro(config)
elif config.mode == "debug":
config.num_steps = 2
config.val_num_batches = 1
config.checkpoint = 1
config.period = 1
train(config)
elif config.mode == "test":
test(config)
elif config.mode == "demo":
demo(config)
else:
print("Unknown mode")
exit(0)
if __name__ == "__main__":
tf.app.run()