Skip to content

Commit

Permalink
Remove resizing assumptions from some results of 'Injective types in …
Browse files Browse the repository at this point in the history
…univalent mathematics'

Co-authored-by: Tom de Jong <[email protected]>
  • Loading branch information
martinescardo and tomdjong committed Nov 21, 2024
1 parent f7a51f1 commit 1541624
Show file tree
Hide file tree
Showing 2 changed files with 47 additions and 8 deletions.
2 changes: 1 addition & 1 deletion source/InjectiveTypes/Blackboard.lagda
Original file line number Diff line number Diff line change
Expand Up @@ -607,7 +607,7 @@ ainjective-is-retract-of-power-of-universe {𝓤} D ua =
Π-ainjective {𝓣} {𝓦} {𝓤} {𝓥} {A} {D} i {X} {Y} j e f = f' , g
where
l : (a : A) → Σ h ꞉ (Y → D a) , h ∘ j ∼ (λ x → f x a)
l a = (i a) j e (λ x → f x a)
l a = i a j e (λ x → f x a)

f' : Y → (a : A) → D a
f' y a = pr₁ (l a) y
Expand Down
53 changes: 46 additions & 7 deletions source/InjectiveTypes/OverSmallMaps.lagda
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Martin Escardo, August 2023

More about injectivity.
Algebraic injectivity over small maps.

\begin{code}

Expand Down Expand Up @@ -94,9 +94,12 @@ ainjectivity-over-small-maps {𝓤} {𝓥} {𝓦} {𝓣₀} {𝓣₂} 𝓣₁ D
\end{code}

Added by Martin Escardo and Tom de Jong 24th October 2024. As an
application of the above, we get the following version of
embedding-retract from InjectiveTypes/Blackboard with better universe
levels.
application of the above, we improve the universe levels of Lemma 14
of [1], which corresponds to `embedding-retract` from
InjectiveTypes/Blackboard.

[1] M.H. Escardó. Injective type in univalent mathematics.
https://doi.org/10.1017/S0960129520000225

\begin{code}

Expand Down Expand Up @@ -143,10 +146,17 @@ module ainjectivity-of-Lifting'
η-is-small-map {𝓤} {X} l = is-defined l ,
≃-sym (η-fiber-same-as-is-defined X pe fe' fe' fe' l)

ainjective-is-retract-of-free-𝓛-algebra' : (D : 𝓤 ̇ )
\end{code}

The following improves the universe levels of Lemma 50 of [1].

\begin{code}

ainjective-is-retract-of-free-𝓛-algebra' : ({𝓤} 𝓥 {𝓦} : Universe)
(D : 𝓤 ̇ )
→ ainjective-type D (𝓣 ⊔ 𝓥) 𝓦
→ retract D of (𝓛 D)
ainjective-is-retract-of-free-𝓛-algebra' {𝓤} {𝓥} {𝓦} D =
ainjective-is-retract-of-free-𝓛-algebra' {𝓤} 𝓥 D =
embedding-retract' 𝓥 D (𝓛 D) η
(η-is-embedding' 𝓤 D ua fe')
η-is-small-map
Expand All @@ -156,7 +166,7 @@ module ainjectivity-of-Lifting'
ainjectives-in-terms-of-free-𝓛-algebras' {𝓤} D = a , b
where
a : ainjective-type D 𝓣 𝓣 → Σ X ꞉ 𝓤 ̇ , retract D of (𝓛 X)
a i = D , ainjective-is-retract-of-free-𝓛-algebra' {𝓤} {𝓣} {𝓣} D i
a i = D , ainjective-is-retract-of-free-𝓛-algebra' 𝓣 D i

b : (Σ X ꞉ 𝓤 ̇ , retract D of (𝓛 X)) → ainjective-type D 𝓣 𝓣
b (X , r) = retract-of-ainjective D (𝓛 X) (free-𝓛-algebra-ainjective ua X) r
Expand All @@ -176,3 +186,32 @@ A particular case of interest that arises in practice is the following.
_ = refl

\end{code}

Added by Martin Escardo and Tom de Jong 21st November 2024. The
following removes the resizing assumption of Theorem 51 of [1].

\begin{code}

ainjectives-in-terms-of-𝓛-algebras
: (D : 𝓤 ̇ ) → ainjective-type D 𝓣 𝓣 ↔ (Σ A ꞉ 𝓣 ⁺ ⊔ 𝓤 ̇ , 𝓛-alg A × retract D of A)
ainjectives-in-terms-of-𝓛-algebras {𝓤} D = a , b
where
a : ainjective-type D 𝓣 𝓣 → (Σ A ꞉ 𝓣 ⁺ ⊔ 𝓤 ̇ , 𝓛-alg A × retract D of A)
a i = 𝓛 D ,
𝓛-algebra-gives-alg (free-𝓛-algebra ua D) ,
ainjective-is-retract-of-free-𝓛-algebra' 𝓣 D i

b : (Σ A ꞉ 𝓣 ⁺ ⊔ 𝓤 ̇ , 𝓛-alg A × retract D of A) → ainjective-type D 𝓣 𝓣
b (A , α , ρ) = retract-of-ainjective D A (𝓛-alg-ainjective pe A α) ρ

\end{code}

Particular case of interest:

\begin{code}

ainjectives-in-terms-of-𝓛-algebras⁺
: (D : 𝓣 ⁺ ̇ ) → ainjective-type D 𝓣 𝓣 ↔ (Σ A ꞉ 𝓣 ⁺ ̇ , 𝓛-alg A × retract D of A)
ainjectives-in-terms-of-𝓛-algebras⁺ = ainjectives-in-terms-of-𝓛-algebras

\end{code}

0 comments on commit 1541624

Please sign in to comment.