Skip to content

Commit

Permalink
Added product of overt in Overtness, small eta-rule cleanup in Compac…
Browse files Browse the repository at this point in the history
…tness
  • Loading branch information
martintrucchi committed Aug 25, 2024
1 parent 1f76efc commit ea0dae9
Show file tree
Hide file tree
Showing 2 changed files with 37 additions and 3 deletions.
2 changes: 1 addition & 1 deletion source/SyntheticTopology/Compactness.lagda
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,7 @@ module _ (𝒳 𝒴 : hSet 𝓤) where
prop-y-open x = compact-Y ((λ y → (x , y) ∈ₚ P) , λ y → open-P (x , y))

† : is-open-proposition chained-forall holds
† = compact-X ((λ x → prop-y x) , prop-y-open)
† = compact-X (prop-y , prop-y-open)

\end{code}

Expand Down
38 changes: 36 additions & 2 deletions source/SyntheticTopology/Overtness.lagda
Original file line number Diff line number Diff line change
Expand Up @@ -72,8 +72,7 @@ The type `𝟙` is always overt, regardless of the Sierpinski object.

\end{code}

We prove here, similar to `image-of-compact`, that image of `overt` sets are
`overt`.
Binary product of overt sets is overt.

\begin{code}

Expand All @@ -84,6 +83,41 @@ module _ (𝒳 𝒴 : hSet 𝓤) where
set-Y = pr₂ 𝒴
open Equality set-Y

×-is-overt : is-overt 𝒳 holds
→ is-overt 𝒴 holds
→ is-overt (𝒳 ×ₛ 𝒴) holds
×-is-overt overt-X overt-Y (P , open-P) =
⇔-open chained-ex tuple-ex (p₁ , p₂) †
where
tuple-ex : Ω 𝓤
tuple-ex = Ǝₚ z ꞉ (X × Y) , z ∈ₚ P

chained-ex : Ω 𝓤
chained-ex = Ǝₚ x ꞉ X , (Ǝₚ y ꞉ Y , (x , y) ∈ₚ P)

p₁ : (chained-ex ⇒ tuple-ex) holds
p₁ = ∥∥-rec ∃-is-prop λ (x , hyp)
→ ∥∥-rec ∃-is-prop (λ (y , hyp') → ∣ (x , y) , hyp' ∣) hyp

p₂ : (tuple-ex ⇒ chained-ex) holds
p₂ = ∥∥-rec ∃-is-prop λ ((x , y) , hyp) → ∣ x , ∣ y , hyp ∣ ∣

prop-y : 𝓟 X
prop-y x = Ǝₚ y ꞉ Y , (x , y) ∈ₚ P

prop-y-open : (x : X) → is-open-proposition (prop-y x) holds
prop-y-open x = overt-Y ((λ y → (x , y) ∈ₚ P) , λ y → open-P (x , y))

† : is-open-proposition chained-ex holds
† = overt-X (prop-y , prop-y-open)

\end{code}

We prove here, similar to `image-of-compact`, that image of `overt` sets are
`overt`.

\begin{code}

image-of-overt : (f : X → Y)
→ is-surjection f
→ is-overt 𝒳 holds
Expand Down

0 comments on commit ea0dae9

Please sign in to comment.