This project is implementations of basic machine learning algorithms. All implementations are based on online learning materials provided by Tokyo Institute of Technology.
-
Regression
- Simple regression (単回帰)
- Multiple regression (重回帰)
- Model selection and regularization (モデル選択と正則化)
- Parameter estimation by gradient method (勾配法によるパラメータ推定)
-
Classification
- Linear binary classification (線形二値分類)
- Linear multiclass classification (線形多クラス分類)
- Neural Network (ニューラルネットワーク)
- Support Vector Machine (サポートベクトルマシン)
-
Unsupervised learning
- Non hierarchical clustring (非階層的クラスタリング)
- Hierarchical clustering (階層的クラスタリング)
- Principal component analysis (主成分分析)