Skip to content

Commit

Permalink
Add 3.6.0 release candidate docs
Browse files Browse the repository at this point in the history
  • Loading branch information
QuLogic committed Sep 2, 2022
1 parent ffb2934 commit 64290fd
Show file tree
Hide file tree
Showing 8,423 changed files with 9,982,988 additions and 0 deletions.
The diff you're trying to view is too large. We only load the first 3000 changed files.
Binary file added 3.6.0/Matplotlib.pdf
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Line Collection\n\nPlotting lines with Matplotlib.\n\n`~matplotlib.collections.LineCollection` allows one to plot multiple\nlines on a figure. Below we show off some of its properties.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\nfrom matplotlib.collections import LineCollection\nfrom matplotlib import colors as mcolors\n\nimport numpy as np\n\n# In order to efficiently plot many lines in a single set of axes,\n# Matplotlib has the ability to add the lines all at once. Here is a\n# simple example showing how it is done.\n\nx = np.arange(100)\n# Here are many sets of y to plot vs. x\nys = x[:50, np.newaxis] + x[np.newaxis, :]\n\nsegs = np.zeros((50, 100, 2))\nsegs[:, :, 1] = ys\nsegs[:, :, 0] = x\n\n# Mask some values to test masked array support:\nsegs = np.ma.masked_where((segs > 50) & (segs < 60), segs)\n\n# We need to set the plot limits.\nfig, ax = plt.subplots()\nax.set_xlim(x.min(), x.max())\nax.set_ylim(ys.min(), ys.max())\n\n# *colors* is sequence of rgba tuples.\n# *linestyle* is a string or dash tuple. Legal string values are\n# solid|dashed|dashdot|dotted. The dash tuple is (offset, onoffseq) where\n# onoffseq is an even length tuple of on and off ink in points. If linestyle\n# is omitted, 'solid' is used.\n# See `matplotlib.collections.LineCollection` for more information.\ncolors = [mcolors.to_rgba(c)\n for c in plt.rcParams['axes.prop_cycle'].by_key()['color']]\n\nline_segments = LineCollection(segs, linewidths=(0.5, 1, 1.5, 2),\n colors=colors, linestyle='solid')\nax.add_collection(line_segments)\nax.set_title('Line collection with masked arrays')\nplt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In order to efficiently plot many lines in a single set of axes,\nMatplotlib has the ability to add the lines all at once. Here is a\nsimple example showing how it is done.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"N = 50\nx = np.arange(N)\n# Here are many sets of y to plot vs. x\nys = [x + i for i in x]\n\n# We need to set the plot limits, they will not autoscale\nfig, ax = plt.subplots()\nax.set_xlim(np.min(x), np.max(x))\nax.set_ylim(np.min(ys), np.max(ys))\n\n# colors is sequence of rgba tuples\n# linestyle is a string or dash tuple. Legal string values are\n# solid|dashed|dashdot|dotted. The dash tuple is (offset, onoffseq)\n# where onoffseq is an even length tuple of on and off ink in points.\n# If linestyle is omitted, 'solid' is used\n# See `matplotlib.collections.LineCollection` for more information\n\n# Make a sequence of (x, y) pairs.\nline_segments = LineCollection([np.column_stack([x, y]) for y in ys],\n linewidths=(0.5, 1, 1.5, 2),\n linestyles='solid')\nline_segments.set_array(x)\nax.add_collection(line_segments)\naxcb = fig.colorbar(line_segments)\naxcb.set_label('Line Number')\nax.set_title('Line Collection with mapped colors')\nplt.sci(line_segments) # This allows interactive changing of the colormap.\nplt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
".. admonition:: References\n\n The use of the following functions, methods, classes and modules is shown\n in this example:\n\n - `matplotlib.collections`\n - `matplotlib.collections.LineCollection`\n - `matplotlib.cm.ScalarMappable.set_array`\n - `matplotlib.axes.Axes.add_collection`\n - `matplotlib.figure.Figure.colorbar` / `matplotlib.pyplot.colorbar`\n - `matplotlib.pyplot.sci`\n\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
"""
==========
Hyperlinks
==========
This example demonstrates how to set a hyperlinks on various kinds of elements.
This currently only works with the SVG backend.
"""


import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt

###############################################################################

fig = plt.figure()
s = plt.scatter([1, 2, 3], [4, 5, 6])
s.set_urls(['https://www.bbc.com/news', 'https://www.google.com/', None])
fig.savefig('scatter.svg')

###############################################################################

fig = plt.figure()
delta = 0.025
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2

im = plt.imshow(Z, interpolation='bilinear', cmap=cm.gray,
origin='lower', extent=[-3, 3, -3, 3])

im.set_url('https://www.google.com/')
fig.savefig('image.svg')
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
"""
================
pyplot animation
================
Generating an animation by calling `~.pyplot.pause` between plotting commands.
The method shown here is only suitable for simple, low-performance use. For
more demanding applications, look at the :mod:`.animation` module and the
examples that use it.
Note that calling `time.sleep` instead of `~.pyplot.pause` would *not* work.
"""

import matplotlib.pyplot as plt
import numpy as np

np.random.seed(19680801)
data = np.random.random((50, 50, 50))

fig, ax = plt.subplots()

for i, img in enumerate(data):
ax.clear()
ax.imshow(img)
ax.set_title(f"frame {i}")
# Note that using time.sleep does *not* work here!
plt.pause(0.1)
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Hatch style reference\n\nHatches can be added to most polygons in Matplotlib, including `~.Axes.bar`,\n`~.Axes.fill_between`, `~.Axes.contourf`, and children of `~.patches.Polygon`.\nThey are currently supported in the PS, PDF, SVG, OSX, and Agg backends. The WX\nand Cairo backends do not currently support hatching.\n\nSee also :doc:`/gallery/images_contours_and_fields/contourf_hatching` for\nan example using `~.Axes.contourf`, and\n:doc:`/gallery/shapes_and_collections/hatch_demo` for more usage examples.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\nfrom matplotlib.patches import Rectangle\n\nfig, axs = plt.subplots(2, 5, constrained_layout=True, figsize=(6.4, 3.2))\n\nhatches = ['/', '\\\\', '|', '-', '+', 'x', 'o', 'O', '.', '*']\n\n\ndef hatches_plot(ax, h):\n ax.add_patch(Rectangle((0, 0), 2, 2, fill=False, hatch=h))\n ax.text(1, -0.5, f\"' {h} '\", size=15, ha=\"center\")\n ax.axis('equal')\n ax.axis('off')\n\nfor ax, h in zip(axs.flat, hatches):\n hatches_plot(ax, h)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hatching patterns can be repeated to increase the density.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"fig, axs = plt.subplots(2, 5, constrained_layout=True, figsize=(6.4, 3.2))\n\nhatches = ['//', '\\\\\\\\', '||', '--', '++', 'xx', 'oo', 'OO', '..', '**']\n\nfor ax, h in zip(axs.flat, hatches):\n hatches_plot(ax, h)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hatching patterns can be combined to create additional patterns.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"fig, axs = plt.subplots(2, 5, constrained_layout=True, figsize=(6.4, 3.2))\n\nhatches = ['/o', '\\\\|', '|*', '-\\\\', '+o', 'x*', 'o-', 'O|', 'O.', '*-']\n\nfor ax, h in zip(axs.flat, hatches):\n hatches_plot(ax, h)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
".. admonition:: References\n\n The use of the following functions, methods, classes and modules is shown\n in this example:\n\n - `matplotlib.patches`\n - `matplotlib.patches.Rectangle`\n - `matplotlib.axes.Axes.add_patch`\n - `matplotlib.axes.Axes.text`\n\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Loading

0 comments on commit 64290fd

Please sign in to comment.