Skip to content

Solve puzzles. Improve your pytorch. The solution.

License

Notifications You must be signed in to change notification settings

mc-marcocheng/Tensor-Puzzles-Solutions

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tensor Puzzles Solutions

This repo keeps my solutions to the amazing Tensor Puzzles.

Please feel free to open an issue if you have a better/shorter solution to each of these puzzles!

Tensor Puzzles

When learning a tensor programming language like PyTorch or Numpy it is tempting to rely on the standard library (or more honestly StackOverflow) to find a magic function for everything. But in practice, the tensor language is extremely expressive, and you can do most things from first principles and clever use of broadcasting.

This is a collection of 21 tensor puzzles. Like chess puzzles these are not meant to simulate the complexity of a real program, but to practice in a simplified environment. Each puzzle asks you to reimplement one function in the NumPy standard library without magic.

I recommend running in Colab. Click here and copy the notebook to get start.

Open In Colab

!pip install -qqq torchtyping hypothesis pytest git+https://github.com/danoneata/chalk@srush-patch-1
!wget -q https://github.com/srush/Tensor-Puzzles/raw/main/lib.py
from lib import draw_examples, make_test, run_test
import torch
import numpy as np
from torchtyping import TensorType as TT
tensor = torch.tensor

Rules

  1. These puzzles are about broadcasting. Know this rule.

  1. Each puzzle needs to be solved in 1 line (<80 columns) of code.

  2. You are allowed @, arithmetic, comparison, shape, any indexing (e.g. a[:j], a[:, None], a[arange(10)]), and previous puzzle functions.

  3. You are not allowed anything else. No view, sum, take, squeeze, tensor.

  4. You can start with these two functions:

def arange(i: int):
    "Use this function to replace a for-loop."
    return torch.tensor(range(i))

draw_examples("arange", [{"" : arange(i)} for i in [5, 3, 9]])

svg

# Example of broadcasting.
examples = [(arange(4), arange(5)[:, None]) ,
            (arange(3)[:, None], arange(2))]
draw_examples("broadcast", [{"a": a, "b":b, "ret": a + b} for a, b in examples])

svg

def where(q, a, b):
    "Use this function to replace an if-statement."
    return (q * a) + (~q) * b

# In diagrams, orange is positive/True, where is zero/False, and blue is negative.

examples = [(tensor([False]), tensor([10]), tensor([0])),
            (tensor([False, True]), tensor([1, 1]), tensor([-10, 0])),
            (tensor([False, True]), tensor([1]), tensor([-10, 0])),
            (tensor([[False, True], [True, False]]), tensor([1]), tensor([-10, 0])),
            (tensor([[False, True], [True, False]]), tensor([[0], [10]]), tensor([-10, 0])),
           ]
draw_examples("where", [{"q": q, "a":a, "b":b, "ret": where(q, a, b)} for q, a, b in examples])

svg

Puzzle 1 - ones

Compute ones - the vector of all ones.

def ones_spec(out):
    for i in range(len(out)):
        out[i] = 1
        
def ones(i: int) -> TT["i"]:
    raise NotImplementedError

test_ones = make_test("one", ones, ones_spec, add_sizes=["i"])

svg

# run_test(test_ones)

Puzzle 2 - sum

Compute sum - the sum of a vector.

def sum_spec(a, out):
    out[0] = 0
    for i in range(len(a)):
        out[0] += a[i]
        
def sum(a: TT["i"]) -> TT[1]:
    raise NotImplementedError


test_sum = make_test("sum", sum, sum_spec)

svg

# run_test(test_sum)

Puzzle 3 - outer

Compute outer - the outer product of two vectors.

def outer_spec(a, b, out):
    for i in range(len(out)):
        for j in range(len(out[0])):
            out[i][j] = a[i] * b[j]
            
def outer(a: TT["i"], b: TT["j"]) -> TT["i", "j"]:
    raise NotImplementedError
    
test_outer = make_test("outer", outer, outer_spec)

svg

# run_test(test_outer)

Puzzle 4 - diag

Compute diag - the diagonal vector of a square matrix.

def diag_spec(a, out):
    for i in range(len(a)):
        out[i] = a[i][i]
        
def diag(a: TT["i", "i"]) -> TT["i"]:
    raise NotImplementedError


test_diag = make_test("diag", diag, diag_spec)

svg

# run_test(test_diag)

Puzzle 5 - eye

Compute eye - the identity matrix.

def eye_spec(out):
    for i in range(len(out)):
        out[i][i] = 1
        
def eye(j: int) -> TT["j", "j"]:
    raise NotImplementedError
    
test_eye = make_test("eye", eye, eye_spec, add_sizes=["j"])

svg

# run_test(test_eye)

Puzzle 6 - triu

Compute triu - the upper triangular matrix.

def triu_spec(out):
    for i in range(len(out)):
        for j in range(len(out)):
            if i <= j:
                out[i][j] = 1
            else:
                out[i][j] = 0
                
def triu(j: int) -> TT["j", "j"]:
    raise NotImplementedError


test_triu = make_test("triu", triu, triu_spec, add_sizes=["j"])

svg

# run_test(test_triu)

Puzzle 7 - cumsum

Compute cumsum - the cumulative sum.

def cumsum_spec(a, out):
    total = 0
    for i in range(len(out)):
        out[i] = total + a[i]
        total += a[i]

def cumsum(a: TT["i"]) -> TT["i"]:
    raise NotImplementedError

test_cumsum = make_test("cumsum", cumsum, cumsum_spec)

svg

# run_test(test_cumsum)

Puzzle 8 - diff

Compute diff - the running difference.

def diff_spec(a, out):
    out[0] = a[0]
    for i in range(1, len(out)):
        out[i] = a[i] - a[i - 1]

def diff(a: TT["i"], i: int) -> TT["i"]:
    raise NotImplementedError

test_diff = make_test("diff", diff, diff_spec, add_sizes=["i"])

svg

# run_test(test_diff)

Puzzle 9 - vstack

Compute vstack - the matrix of two vectors

def vstack_spec(a, b, out):
    for i in range(len(out[0])):
        out[0][i] = a[i]
        out[1][i] = b[i]

def vstack(a: TT["i"], b: TT["i"]) -> TT[2, "i"]:
    raise NotImplementedError


test_vstack = make_test("vstack", vstack, vstack_spec)

svg

# run_test(test_vstack)

Puzzle 10 - roll

Compute roll - the vector shifted 1 circular position.

def roll_spec(a, out):
    for i in range(len(out)):
        if i + 1 < len(out):
            out[i] = a[i + 1]
        else:
            out[i] = a[i + 1 - len(out)]
            
def roll(a: TT["i"], i: int) -> TT["i"]:
    raise NotImplementedError


test_roll = make_test("roll", roll, roll_spec, add_sizes=["i"])

svg

# run_test(test_roll)

Puzzle 11 - flip

Compute flip - the reversed vector

def flip_spec(a, out):
    for i in range(len(out)):
        out[i] = a[len(out) - i - 1]
        
def flip(a: TT["i"], i: int) -> TT["i"]:
    raise NotImplementedError


test_flip = make_test("flip", flip, flip_spec, add_sizes=["i"])

svg

# run_test(test_flip)

Puzzle 12 - compress

Compute compress - keep only masked entries (left-aligned).

def compress_spec(g, v, out):
    j = 0
    for i in range(len(g)):
        if g[i]:
            out[j] = v[i]
            j += 1
            
def compress(g: TT["i", bool], v: TT["i"], i:int) -> TT["i"]:
    raise NotImplementedError


test_compress = make_test("compress", compress, compress_spec, add_sizes=["i"])

svg

# run_test(test_compress)

Puzzle 13 - pad_to

Compute pad_to - eliminate or add 0s to change size of vector.

def pad_to_spec(a, out):
    for i in range(min(len(out), len(a))):
        out[i] = a[i]


def pad_to(a: TT["i"], i: int, j: int) -> TT["j"]:
    raise NotImplementedError


test_pad_to = make_test("pad_to", pad_to, pad_to_spec, add_sizes=["i", "j"])

svg

# run_test(test_pad_to)

Puzzle 14 - sequence_mask

Compute sequence_mask - pad out to length per batch.

def sequence_mask_spec(values, length, out):
    for i in range(len(out)):
        for j in range(len(out[0])):
            if j < length[i]:
                out[i][j] = values[i][j]
            else:
                out[i][j] = 0
    
def sequence_mask(values: TT["i", "j"], length: TT["i", int]) -> TT["i", "j"]:
    raise NotImplementedError


def constraint_set_length(d):
    d["length"] = d["length"] % d["values"].shape[1]
    return d


test_sequence = make_test("sequence_mask",
    sequence_mask, sequence_mask_spec, constraint=constraint_set_length
)

svg

# run_test(test_sequence)

Puzzle 15 - bincount

Compute bincount - count number of times an entry was seen.

def bincount_spec(a, out):
    for i in range(len(a)):
        out[a[i]] += 1
        
def bincount(a: TT["i"], j: int) -> TT["j"]:
    raise NotImplementedError


def constraint_set_max(d):
    d["a"] = d["a"] % d["return"].shape[0]
    return d


test_bincount = make_test("bincount",
    bincount, bincount_spec, add_sizes=["j"], constraint=constraint_set_max
)

svg

# run_test(test_bincount)

Puzzle 16 - scatter_add

Compute scatter_add - add together values that link to the same location.

def scatter_add_spec(values, link, out):
    for j in range(len(values)):
        out[link[j]] += values[j]
        
def scatter_add(values: TT["i"], link: TT["i"], j: int) -> TT["j"]:
    raise NotImplementedError


def constraint_set_max(d):
    d["link"] = d["link"] % d["return"].shape[0]
    return d


test_scatter_add = make_test("scatter_add",
    scatter_add, scatter_add_spec, add_sizes=["j"], constraint=constraint_set_max
)

svg

# run_test(test_scatter_add)

Puzzle 17 - flatten

Compute flatten

def flatten_spec(a, out):
    k = 0
    for i in range(len(a)):
        for j in range(len(a[0])):
            out[k] = a[i][j]
            k += 1

def flatten(a: TT["i", "j"], i:int, j:int) -> TT["i * j"]:
    raise NotImplementedError

test_flatten = make_test("flatten", flatten, flatten_spec, add_sizes=["i", "j"])

svg

# run_test(test_flatten)

Puzzle 18 - linspace

Compute linspace

def linspace_spec(i, j, out):
    for k in range(len(out)):
        out[k] = float(i + (j - i) * k / max(1, len(out) - 1))

def linspace(i: TT[1], j: TT[1], n: int) -> TT["n", float]:
    raise NotImplementedError

test_linspace = make_test("linspace", linspace, linspace_spec, add_sizes=["n"])

svg

# run_test(test_linspace)

Puzzle 19 - heaviside

Compute heaviside

def heaviside_spec(a, b, out):
    for k in range(len(out)):
        if a[k] == 0:
            out[k] = b[k]
        else:
            out[k] = int(a[k] > 0)

def heaviside(a: TT["i"], b: TT["i"]) -> TT["i"]:
    raise NotImplementedError

test_heaviside = make_test("heaviside", heaviside, heaviside_spec)

svg

# run_test(test_heaviside)

Puzzle 20 - repeat (1d)

Compute repeat

def repeat_spec(a, d, out):
    for i in range(d[0]):
        for k in range(len(a)):
            out[i][k] = a[k]

def constraint_set(d):
    d["d"][0] = d["return"].shape[0]
    return d

            
def repeat(a: TT["i"], d: TT[1]) -> TT["d", "i"]:
    raise NotImplementedError

test_repeat = make_test("repeat", repeat, repeat_spec, constraint=constraint_set)

svg

Puzzle 21 - bucketize

Compute bucketize

def bucketize_spec(v, boundaries, out):
    for i, val in enumerate(v):
        out[i] = 0
        for j in range(len(boundaries)-1):
            if val >= boundaries[j]:
                out[i] = j + 1
        if val >= boundaries[-1]:
            out[i] = len(boundaries)


def constraint_set(d):
    d["boundaries"] = np.abs(d["boundaries"]).cumsum()
    return d

            
def bucketize(v: TT["i"], boundaries: TT["j"]) -> TT["i"]:
    raise NotImplementedError

test_bucketize = make_test("bucketize", bucketize, bucketize_spec,
                           constraint=constraint_set)

svg

Speed Run Mode!

What is the smallest you can make each of these?

import inspect
fns = (ones, sum, outer, diag, eye, triu, cumsum, diff, vstack, roll, flip,
       compress, pad_to, sequence_mask, bincount, scatter_add)

for fn in fns:
    lines = [l for l in inspect.getsource(fn).split("\n") if not l.strip().startswith("#")]
    
    if len(lines) > 3:
        print(fn.__name__, len(lines[2]), "(more than 1 line)")
    else:
        print(fn.__name__, len(lines[1]))
ones 29
sum 29
outer 29
diag 29
eye 29
triu 29
cumsum 29
diff 29
vstack 29
roll 29
flip 29
compress 29
pad_to 29
sequence_mask 29
bincount 29
scatter_add 29

About

Solve puzzles. Improve your pytorch. The solution.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.3%
  • Python 0.7%