Skip to content

metaqiang/reinforcement-learning-using-knowledge-controller

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reinforcement Learning Using Knowledge Controller

Implementation for "Accelerating Deep Reinforcement Learning via Knowledge-Guided Policy Network".

Setup Environment

Environement Requirements

  • python 3.7
  • pytorch 1.7
  • gym 0.16.0
  • wandb
  • tensorboardX

Our Network Structure and Rules

See Controller in controller.py and XXXRule in ./rule/*.py for details.

Training

All log and snapshot would be stored logging directory. Logging directory is default to be "./output/ENV_NAME". Different environments can be used by providing env values in the args.

# For CartPole without Knowledge
python main.py --env CartPole-v1 --no_controller --max_update 5000 --seed 0

# For CartPole with Knowledge
python main.py --env CartPole-v1 --max_update 5000 --seed 0

# For FlappyBird without Knowledge
python main.py --env FlappyBird --no_controller --max_update 1200 --seed 0

# For FlappyBird with Knowledge
python main.py --env FlappyBird --no_controller --max_update 1200 --seed 0

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages