Skip to content

Commit

Permalink
Merge pull request Pyomo#2994 from Robbybp/cyipopt-evalerror
Browse files Browse the repository at this point in the history
Handle evaluation errors in CyIpopt solver
  • Loading branch information
michaelbynum authored Nov 3, 2023
2 parents 00e9324 + 6d7ab00 commit 70ef6e4
Show file tree
Hide file tree
Showing 4 changed files with 273 additions and 17 deletions.
11 changes: 10 additions & 1 deletion pyomo/contrib/pynumero/algorithms/solvers/cyipopt_solver.py
Original file line number Diff line number Diff line change
Expand Up @@ -289,6 +289,13 @@ class PyomoCyIpoptSolver(object):
description="Set the function that will be called each iteration.",
),
)
CONFIG.declare(
"halt_on_evaluation_error",
ConfigValue(
default=None,
description="Whether to halt if a function or derivative evaluation fails",
),
)

def __init__(self, **kwds):
"""Create an instance of the CyIpoptSolver. You must
Expand Down Expand Up @@ -332,7 +339,9 @@ def solve(self, model, **kwds):
nlp = pyomo_nlp.PyomoNLP(model)

problem = cyipopt_interface.CyIpoptNLP(
nlp, intermediate_callback=config.intermediate_callback
nlp,
intermediate_callback=config.intermediate_callback,
halt_on_evaluation_error=config.halt_on_evaluation_error,
)
ng = len(problem.g_lb())
nx = len(problem.x_lb())
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
if not (numpy_available and scipy_available):
raise unittest.SkipTest("Pynumero needs scipy and numpy to run NLP tests")

from pyomo.contrib.pynumero.exceptions import PyNumeroEvaluationError
from pyomo.contrib.pynumero.asl import AmplInterface

if not AmplInterface.available():
Expand All @@ -34,12 +35,18 @@
from pyomo.contrib.pynumero.interfaces.pyomo_nlp import PyomoNLP

from pyomo.contrib.pynumero.interfaces.cyipopt_interface import (
cyipopt,
cyipopt_available,
CyIpoptNLP,
)

from pyomo.contrib.pynumero.algorithms.solvers.cyipopt_solver import CyIpoptSolver

if cyipopt_available:
# We don't raise unittest.SkipTest if not cyipopt_available as there is a
# test below that tests an exception when cyipopt is unavailable.
cyipopt_ge_1_3 = hasattr(cyipopt, "CyIpoptEvaluationError")


def create_model1():
m = pyo.ConcreteModel()
Expand Down Expand Up @@ -155,6 +162,29 @@ def f(model):
return model


def make_hs071_model():
# This is a model that is mathematically equivalent to the Hock-Schittkowski
# test problem 071, but that will trigger an evaluation error if x[0] goes
# above 1.1.
m = pyo.ConcreteModel()
m.x = pyo.Var([0, 1, 2, 3], bounds=(1.0, 5.0))
m.x[0] = 1.0
m.x[1] = 5.0
m.x[2] = 5.0
m.x[3] = 1.0
m.obj = pyo.Objective(expr=m.x[0] * m.x[3] * (m.x[0] + m.x[1] + m.x[2]) + m.x[2])
# This expression evaluates to zero, but is not well defined when x[0] > 1.1
trivial_expr_with_eval_error = (pyo.sqrt(1.1 - m.x[0])) ** 2 + m.x[0] - 1.1
m.ineq1 = pyo.Constraint(expr=m.x[0] * m.x[1] * m.x[2] * m.x[3] >= 25.0)
m.eq1 = pyo.Constraint(
expr=(
m.x[0] ** 2 + m.x[1] ** 2 + m.x[2] ** 2 + m.x[3] ** 2
== 40.0 + trivial_expr_with_eval_error
)
)
return m


@unittest.skipIf(cyipopt_available, "cyipopt is available")
class TestCyIpoptNotAvailable(unittest.TestCase):
def test_not_available_exception(self):
Expand Down Expand Up @@ -257,3 +287,32 @@ def test_options(self):
x, info = solver.solve(tee=False)
nlp.set_primals(x)
self.assertAlmostEqual(nlp.evaluate_objective(), -5.0879028e02, places=5)

@unittest.skipUnless(
cyipopt_available and cyipopt_ge_1_3, "cyipopt version < 1.3.0"
)
def test_hs071_evalerror(self):
m = make_hs071_model()
solver = pyo.SolverFactory("cyipopt")
res = solver.solve(m, tee=True)

x = list(m.x[:].value)
expected_x = np.array([1.0, 4.74299964, 3.82114998, 1.37940829])
np.testing.assert_allclose(x, expected_x)

def test_hs071_evalerror_halt(self):
m = make_hs071_model()
solver = pyo.SolverFactory("cyipopt", halt_on_evaluation_error=True)
msg = "Error in AMPL evaluation"
with self.assertRaisesRegex(PyNumeroEvaluationError, msg):
res = solver.solve(m, tee=True)

@unittest.skipIf(
not cyipopt_available or cyipopt_ge_1_3, "cyipopt version >= 1.3.0"
)
def test_hs071_evalerror_old_cyipopt(self):
m = make_hs071_model()
solver = pyo.SolverFactory("cyipopt")
msg = "Error in AMPL evaluation"
with self.assertRaisesRegex(PyNumeroEvaluationError, msg):
res = solver.solve(m, tee=True)
88 changes: 72 additions & 16 deletions pyomo/contrib/pynumero/interfaces/cyipopt_interface.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
import abc

from pyomo.common.dependencies import attempt_import, numpy as np, numpy_available
from pyomo.contrib.pynumero.exceptions import PyNumeroEvaluationError


def _cyipopt_importer():
Expand Down Expand Up @@ -252,7 +253,7 @@ def intermediate(


class CyIpoptNLP(CyIpoptProblemInterface):
def __init__(self, nlp, intermediate_callback=None):
def __init__(self, nlp, intermediate_callback=None, halt_on_evaluation_error=None):
"""This class provides a CyIpoptProblemInterface for use
with the CyIpoptSolver class that can take in an NLP
as long as it provides vectors as numpy ndarrays and
Expand All @@ -263,6 +264,23 @@ def __init__(self, nlp, intermediate_callback=None):
self._nlp = nlp
self._intermediate_callback = intermediate_callback

cyipopt_has_eval_error = cyipopt_available and hasattr(
cyipopt, "CyIpoptEvaluationError"
)
if halt_on_evaluation_error is None:
# If using cyipopt >= 1.3, the default is to continue.
# Otherwise, the default is to halt (because we are forced to).
#
# If CyIpopt is not available, we "halt" (re-raise the original
# exception).
self._halt_on_evaluation_error = not cyipopt_has_eval_error
elif not halt_on_evaluation_error and not cyipopt_has_eval_error:
raise ValueError(
"halt_on_evaluation_error=False is only supported for cyipopt >= 1.3.0"
)
else:
self._halt_on_evaluation_error = halt_on_evaluation_error

x = nlp.init_primals()
y = nlp.init_duals()
if np.any(np.isnan(y)):
Expand Down Expand Up @@ -328,24 +346,54 @@ def scaling_factors(self):
return obj_scaling, x_scaling, g_scaling

def objective(self, x):
self._set_primals_if_necessary(x)
return self._nlp.evaluate_objective()
try:
self._set_primals_if_necessary(x)
return self._nlp.evaluate_objective()
except PyNumeroEvaluationError:
if self._halt_on_evaluation_error:
raise
else:
raise cyipopt.CyIpoptEvaluationError(
"Error in objective function evaluation"
)

def gradient(self, x):
self._set_primals_if_necessary(x)
return self._nlp.evaluate_grad_objective()
try:
self._set_primals_if_necessary(x)
return self._nlp.evaluate_grad_objective()
except PyNumeroEvaluationError:
if self._halt_on_evaluation_error:
raise
else:
raise cyipopt.CyIpoptEvaluationError(
"Error in objective gradient evaluation"
)

def constraints(self, x):
self._set_primals_if_necessary(x)
return self._nlp.evaluate_constraints()
try:
self._set_primals_if_necessary(x)
return self._nlp.evaluate_constraints()
except PyNumeroEvaluationError:
if self._halt_on_evaluation_error:
raise
else:
raise cyipopt.CyIpoptEvaluationError("Error in constraint evaluation")

def jacobianstructure(self):
return self._jac_g.row, self._jac_g.col

def jacobian(self, x):
self._set_primals_if_necessary(x)
self._nlp.evaluate_jacobian(out=self._jac_g)
return self._jac_g.data
try:
self._set_primals_if_necessary(x)
self._nlp.evaluate_jacobian(out=self._jac_g)
return self._jac_g.data
except PyNumeroEvaluationError:
if self._halt_on_evaluation_error:
raise
else:
raise cyipopt.CyIpoptEvaluationError(
"Error in constraint Jacobian evaluation"
)

def hessianstructure(self):
if not self._hessian_available:
Expand All @@ -359,12 +407,20 @@ def hessian(self, x, y, obj_factor):
if not self._hessian_available:
raise ValueError("Hessian requested, but not supported by the NLP")

self._set_primals_if_necessary(x)
self._set_duals_if_necessary(y)
self._set_obj_factor_if_necessary(obj_factor)
self._nlp.evaluate_hessian_lag(out=self._hess_lag)
data = np.compress(self._hess_lower_mask, self._hess_lag.data)
return data
try:
self._set_primals_if_necessary(x)
self._set_duals_if_necessary(y)
self._set_obj_factor_if_necessary(obj_factor)
self._nlp.evaluate_hessian_lag(out=self._hess_lag)
data = np.compress(self._hess_lower_mask, self._hess_lag.data)
return data
except PyNumeroEvaluationError:
if self._halt_on_evaluation_error:
raise
else:
raise cyipopt.CyIpoptEvaluationError(
"Error in Lagrangian Hessian evaluation"
)

def intermediate(
self,
Expand Down
Loading

0 comments on commit 70ef6e4

Please sign in to comment.