Skip to content
This repository has been archived by the owner on Aug 21, 2024. It is now read-only.

Fix math mode rendering in browser #814

Merged
merged 18 commits into from
Aug 4, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions BasicGates/BasicGates.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -214,7 +214,7 @@
"\n",
"**Input:** A qubit in state $|\\psi\\rangle = \\alpha |0\\rangle + \\beta |1\\rangle$.\n",
"\n",
"**Goal:** Change the qubit state to $\\alpha |0\\rangle + \\color{red}i\\beta |1\\rangle$ (add a relative phase $i$ to $|1\\rangle$ component of the superposition).\n"
"**Goal:** Change the qubit state to $\\alpha |0\\rangle + {\\color{red}i}\\beta |1\\rangle$ (add a relative phase $i$ to $|1\\rangle$ component of the superposition).\n"
]
},
{
Expand Down Expand Up @@ -251,7 +251,7 @@
"**Goal:** Change the state of the qubit as follows:\n",
"- If the qubit is in state $|0\\rangle$, don't change its state.\n",
"- If the qubit is in state $|1\\rangle$, change its state to $e^{i\\alpha} |1\\rangle$.\n",
"- If the qubit is in superposition, change its state according to the effect on basis vectors: $\\beta |0\\rangle + \\color{red}{e^{i\\alpha}} \\gamma |1\\rangle$.\n"
"- If the qubit is in superposition, change its state according to the effect on basis vectors: $\\beta |0\\rangle + {\\color{red}{e^{i\\alpha}}} \\gamma |1\\rangle$.\n"
]
},
{
Expand Down Expand Up @@ -479,10 +479,10 @@
"source": [
"### Task 2.2. Two-qubit gate - 2\n",
"\n",
"**Input:** Two unentangled qubits (stored in an array of length 2) in state $|+\\rangle \\otimes |+\\rangle = \\frac{1}{2} \\big( |00\\rangle + |01\\rangle + |10\\rangle \\color{blue}+ |11\\rangle \\big)$.\n",
"**Input:** Two unentangled qubits (stored in an array of length 2) in state $|+\\rangle \\otimes |+\\rangle = \\frac{1}{2} \\big( |00\\rangle + |01\\rangle + |10\\rangle {\\color{blue}+} |11\\rangle \\big)$.\n",
"\n",
"\n",
"**Goal:** Change the two-qubit state to $\\frac{1}{2} \\big( |00\\rangle + |01\\rangle + |10\\rangle \\color{red}- |11\\rangle \\big)$.\n",
"**Goal:** Change the two-qubit state to $\\frac{1}{2} \\big( |00\\rangle + |01\\rangle + |10\\rangle {\\color{red}-} |11\\rangle \\big)$.\n",
"\n",
"> Note that while the starting state can be represented as a tensor product of single-qubit states,\n",
"> the resulting two-qubit state can not be represented in such a way."
Expand Down Expand Up @@ -514,10 +514,10 @@
"source": [
"### Task 2.3. Two-qubit gate - 3\n",
"\n",
"**Input:** Two unentangled qubits (stored in an array of length 2) in an arbitrary two-qubit state $\\alpha |00\\rangle + \\color{blue}\\beta |01\\rangle + \\color{blue}\\gamma |10\\rangle + \\delta |11\\rangle$.\n",
"**Input:** Two unentangled qubits (stored in an array of length 2) in an arbitrary two-qubit state $\\alpha |00\\rangle + {\\color{blue}\\beta} |01\\rangle + {\\color{blue}\\gamma} |10\\rangle + \\delta |11\\rangle$.\n",
"\n",
"\n",
"**Goal:** Change the two-qubit state to $\\alpha |00\\rangle + \\color{red}\\gamma |01\\rangle + \\color{red}\\beta |10\\rangle + \\delta |11\\rangle$.\n",
"**Goal:** Change the two-qubit state to $\\alpha |00\\rangle + {\\color{red}\\gamma} |01\\rangle + {\\color{red}\\beta} |10\\rangle + \\delta |11\\rangle$.\n",
"\n",
"> This task can be solved using one intrinsic gate; as an exercise, try to express the solution using several (possibly controlled) Pauli gates."
]
Expand Down Expand Up @@ -549,9 +549,9 @@
"### Task 2.4. Toffoli gate\n",
"\n",
"**Input:** Three qubits (stored in an array of length 3) in an arbitrary three-qubit state \n",
"$\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\zeta|101\\rangle + \\color{blue}\\eta|110\\rangle + \\color{blue}\\theta|111\\rangle$.\n",
"$\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\zeta|101\\rangle + {\\color{blue}\\eta}|110\\rangle + {\\color{blue}\\theta}|111\\rangle$.\n",
"\n",
"**Goal:** Flip the state of the third qubit if the state of the first two is $|11\\rangle$, i.e., change the three-qubit state to $\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\zeta|101\\rangle + \\color{red}\\theta|110\\rangle + \\color{red}\\eta|111\\rangle$."
"**Goal:** Flip the state of the third qubit if the state of the first two is $|11\\rangle$, i.e., change the three-qubit state to $\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\zeta|101\\rangle + {\\color{red}\\theta}|110\\rangle + {\\color{red}\\eta}|111\\rangle$."
]
},
{
Expand Down Expand Up @@ -581,9 +581,9 @@
"### Task 2.5. Fredkin gate\n",
"\n",
"**Input:** Three qubits (stored in an array of length 3) in an arbitrary three-qubit state \n",
"$\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\color{blue}\\zeta|101\\rangle + \\color{blue}\\eta|110\\rangle + \\theta|111\\rangle$.\n",
"$\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + {\\color{blue}\\zeta}|101\\rangle + {\\color{blue}\\eta}|110\\rangle + \\theta|111\\rangle$.\n",
"\n",
"**Goal:** Swap the states of second and third qubit if and only if the state of the first qubit is $|1\\rangle$, i.e., change the three-qubit state to $\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\color{red}\\eta|101\\rangle + \\color{red}\\zeta|110\\rangle + \\theta|111\\rangle$."
"**Goal:** Swap the states of second and third qubit if and only if the state of the first qubit is $|1\\rangle$, i.e., change the three-qubit state to $\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + {\\color{red}\\eta}|101\\rangle + {\\color{red}\\zeta}|110\\rangle + \\theta|111\\rangle$."
]
},
{
Expand Down
36 changes: 18 additions & 18 deletions BasicGates/Workbook_BasicGates.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -622,7 +622,7 @@
"\n",
"**Input:** A qubit in state $|\\psi\\rangle = \\alpha |0\\rangle + \\beta |1\\rangle$.\n",
"\n",
"**Goal:** Change the qubit state to $\\alpha |0\\rangle + \\color{red}i\\beta |1\\rangle$ (add a relative phase $i$ to $|1\\rangle$ component of the superposition).\n"
"**Goal:** Change the qubit state to $\\alpha |0\\rangle + {\\color{red}i}\\beta |1\\rangle$ (add a relative phase $i$ to $|1\\rangle$ component of the superposition).\n"
]
},
{
Expand Down Expand Up @@ -745,7 +745,7 @@
"**Goal:** Change the state of the qubit as follows:\n",
"- If the qubit is in state $|0\\rangle$, don't change its state.\n",
"- If the qubit is in state $|1\\rangle$, change its state to $e^{i\\alpha} |1\\rangle$.\n",
"- If the qubit is in superposition, change its state according to the effect on basis vectors: $\\beta |0\\rangle + \\color{red}{e^{i\\alpha}} \\gamma |1\\rangle$."
"- If the qubit is in superposition, change its state according to the effect on basis vectors: $\\beta |0\\rangle + {\\color{red}{e^{i\\alpha}}} \\gamma |1\\rangle$."
]
},
{
Expand Down Expand Up @@ -794,14 +794,14 @@
" =\n",
"\\begin{bmatrix}\n",
" 1.\\beta + 0.\\gamma\\\\\n",
" 0.\\beta + \\color{red}{e^{i\\alpha}}\\gamma\n",
" 0.\\beta + {\\color{red}{e^{i\\alpha}}}\\gamma\n",
" \\end{bmatrix} \n",
" =\n",
" \\begin{bmatrix}\n",
" \\beta\\\\\n",
" \\color{red}{e^{i\\alpha}}\\gamma\n",
" {\\color{red}{e^{i\\alpha}}}\\gamma\n",
" \\end{bmatrix} \n",
" = \\beta |0\\rangle + \\color{red}{e^{i\\alpha}} \\gamma |1\\rangle\n",
" = \\beta |0\\rangle + {\\color{red}{e^{i\\alpha}}} \\gamma |1\\rangle\n",
"$$"
]
},
Expand Down Expand Up @@ -1166,10 +1166,10 @@
"source": [
"## Task 2.2. Two-qubit gate - 2\n",
"\n",
"**Input:** Two unentangled qubits (stored in an array of length 2) in state $|+\\rangle \\otimes |+\\rangle = \\frac{1}{2} \\big( |00\\rangle + |01\\rangle + |10\\rangle \\color{blue}+ |11\\rangle \\big)$.\n",
"**Input:** Two unentangled qubits (stored in an array of length 2) in state $|+\\rangle \\otimes |+\\rangle = \\frac{1}{2} \\big( |00\\rangle + |01\\rangle + |10\\rangle {\\color{blue}+} |11\\rangle \\big)$.\n",
"\n",
"\n",
"**Goal:** Change the two-qubit state to $\\frac{1}{2} \\big( |00\\rangle + |01\\rangle + |10\\rangle \\color{red}- |11\\rangle \\big)$."
"**Goal:** Change the two-qubit state to $\\frac{1}{2} \\big( |00\\rangle + |01\\rangle + |10\\rangle {\\color{red}-} |11\\rangle \\big)$."
]
},
{
Expand Down Expand Up @@ -1278,7 +1278,7 @@
" 1\\cdot\\color{red}{e^{i\\alpha}}\\\\\n",
"\\end{bmatrix}\n",
"=\n",
"\\frac{1}{2} \\big( |00\\rangle + |01\\rangle + |10\\rangle \\color{red}- |11\\rangle \\big)\n",
"\\frac{1}{2} \\big( |00\\rangle + |01\\rangle + |10\\rangle {\\color{red}-} |11\\rangle \\big)\n",
"$$"
]
},
Expand Down Expand Up @@ -1337,10 +1337,10 @@
"source": [
"## Task 2.3. Two-qubit gate - 3\n",
"\n",
"**Input:** Two unentangled qubits (stored in an array of length 2) in an arbitrary two-qubit state $\\alpha |00\\rangle + \\color{blue}\\beta |01\\rangle + \\color{blue}\\gamma |10\\rangle + \\delta |11\\rangle$.\n",
"**Input:** Two unentangled qubits (stored in an array of length 2) in an arbitrary two-qubit state $\\alpha |00\\rangle + {\\color{blue}\\beta} |01\\rangle + {\\color{blue}\\gamma} |10\\rangle + \\delta |11\\rangle$.\n",
"\n",
"\n",
"**Goal:** Change the two-qubit state to $\\alpha |00\\rangle + \\color{red}\\gamma |01\\rangle + \\color{red}\\beta |10\\rangle + \\delta |11\\rangle$.\n",
"**Goal:** Change the two-qubit state to $\\alpha |00\\rangle + {\\color{red}\\gamma} |01\\rangle + {\\color{red}\\beta} |10\\rangle + \\delta |11\\rangle$.\n",
"\n",
"> This task can be solved using one intrinsic gate; as an exercise, try to express the solution using several (possibly controlled) Pauli gates."
]
Expand Down Expand Up @@ -1423,7 +1423,7 @@
" \\delta\\\\\n",
"\\end{bmatrix}\n",
"=\n",
"|00\\rangle + \\color{red}\\gamma |01\\rangle + \\color{red}\\beta |10\\rangle + \\delta |11\\rangle\n",
"|00\\rangle + {\\color{red}\\gamma} |01\\rangle + {\\color{red}\\beta} |10\\rangle + \\delta |11\\rangle\n",
"$$"
]
},
Expand Down Expand Up @@ -1533,9 +1533,9 @@
"## Task 2.4. Toffoli gate\n",
"\n",
"**Input:** Three qubits (stored in an array of length 3) in an arbitrary three-qubit state \n",
"$\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\zeta|101\\rangle + \\color{blue}\\eta|110\\rangle + \\color{blue}\\theta|111\\rangle$.\n",
"$\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\zeta|101\\rangle + {\\color{blue}\\eta}|110\\rangle + {\\color{blue}\\theta}|111\\rangle$.\n",
"\n",
"**Goal:** Flip the state of the third qubit if the state of the first two is $|11\\rangle$, i.e., change the three-qubit state to $\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\zeta|101\\rangle + \\color{red}\\theta|110\\rangle + \\color{red}\\eta|111\\rangle$.\n",
"**Goal:** Flip the state of the third qubit if the state of the first two is $|11\\rangle$, i.e., change the three-qubit state to $\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\zeta|101\\rangle + {\\color{red}\\theta}|110\\rangle + {\\color{red}\\eta}|111\\rangle$.\n",
"\n",
"### Solution\n",
"\n",
Expand Down Expand Up @@ -1629,7 +1629,7 @@
" \\color{red}\\eta\\\\ \n",
"\\end{bmatrix}\n",
"=\n",
"\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\zeta|101\\rangle + \\color{red}\\theta|110\\rangle + \\color{red}\\eta|111\\rangle\n",
"\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\zeta|101\\rangle + {\\color{red}\\theta}|110\\rangle + {\\color{red}\\eta}|111\\rangle\n",
"$$"
]
},
Expand Down Expand Up @@ -1660,9 +1660,9 @@
"## Task 2.5. Fredkin gate\n",
"\n",
"**Input:** Three qubits (stored in an array of length 3) in an arbitrary three-qubit state \n",
"$\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\color{blue}\\zeta|101\\rangle + \\color{blue}\\eta|110\\rangle + \\theta|111\\rangle$.\n",
"$\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + {\\color{blue}\\zeta}|101\\rangle + {\\color{blue}\\eta}|110\\rangle + \\theta|111\\rangle$.\n",
"\n",
"**Goal:** Swap the states of second and third qubit if and only if the state of the first qubit is $|1\\rangle$, i.e., change the three-qubit state to $\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\color{red}\\eta|101\\rangle + \\color{red}\\zeta|110\\rangle + \\theta|111\\rangle$.\n",
"**Goal:** Swap the states of second and third qubit if and only if the state of the first qubit is $|1\\rangle$, i.e., change the three-qubit state to $\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + {\\color{red}\\eta}|101\\rangle + {\\color{red}\\zeta}|110\\rangle + \\theta|111\\rangle$.\n",
"\n",
"\n",
"### Solution\n",
Expand Down Expand Up @@ -1758,7 +1758,7 @@
" \\theta\\\\ \n",
"\\end{bmatrix}\n",
"=\n",
"\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + \\color{red}\\eta|101\\rangle + \\color{red}\\zeta|110\\rangle + \\theta|111\\rangle\n",
"\\alpha |000\\rangle + \\beta |001\\rangle + \\gamma |010\\rangle + \\delta |011\\rangle + \\epsilon |100\\rangle + {\\color{red}\\eta}|101\\rangle + {\\color{red}\\zeta}|110\\rangle + \\theta|111\\rangle\n",
"$$"
]
},
Expand Down Expand Up @@ -1800,7 +1800,7 @@
"file_extension": ".qs",
"mimetype": "text/x-qsharp",
"name": "qsharp",
"version": "0.14"
"version": "0.24"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
Expand Down
12 changes: 6 additions & 6 deletions tutorials/ComplexArithmetic/ComplexArithmetic.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -68,10 +68,10 @@
"\n",
"As we said before, $i$ can't be a real number. In that case, we'll call it an **imaginary unit**. However, there is no reason for us to define it as acting any different from any other number, other than the fact that $i^2 = -1$:\n",
"\n",
"$$i + i = 2i \\\\\n",
"i - i = 0 \\\\\n",
"-1 \\cdot i = -i \\\\\n",
"(-i)^{2} = -1$$\n",
"$$i + i = 2i$$\n",
"$$i - i = 0$$\n",
"$$-1 \\cdot i = -i$$\n",
"$$(-i)^{2} = -1$$\n",
"\n",
"We'll call the number $i$ and its real multiples **imaginary numbers**.\n",
"\n",
Expand Down Expand Up @@ -251,8 +251,8 @@
"\n",
"Another property of the conjugate is that it distributes over both complex addition and complex multiplication:\n",
"\n",
"$$\\overline{x + y} = \\overline{x} + \\overline{y} \\\\\n",
"\\overline{x \\cdot y} = \\overline{x} \\cdot \\overline{y}$$"
"$$\\overline{x + y} = \\overline{x} + \\overline{y}$$\n",
"$$\\overline{x \\cdot y} = \\overline{x} \\cdot \\overline{y}$$"
]
},
{
Expand Down
8 changes: 4 additions & 4 deletions tutorials/LinearAlgebra/LinearAlgebra.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -405,8 +405,8 @@
"\n",
"Another, equivalent definition highlights what makes this an interesting property. For any matrices $B$ and $C$ of compatible sizes:\n",
"\n",
"$$A^{-1}(AB) = A(A^{-1}B) = B \\\\\n",
"(CA)A^{-1} = (CA^{-1})A = C$$\n",
"$$A^{-1}(AB) = A(A^{-1}B) = B$$\n",
"$$(CA)A^{-1} = (CA^{-1})A = C$$\n",
"\n",
"A square matrix has a property called the **determinant**, with the determinant of matrix $A$ being written as $|A|$. A matrix is invertible if and only if its determinant isn't equal to $0$.\n",
"\n",
Expand Down Expand Up @@ -948,8 +948,8 @@
" A_{n-1,0} \\cdot \\color{blue} {\\begin{bmatrix}B_{0,0} & \\dotsb & B_{0,l-1} \\\\ \\vdots & \\ddots & \\vdots \\\\ B_{k-1,0} & \\dotsb & B_{k-1,l-1} \\end{bmatrix}} & \\dotsb &\n",
" A_{n-1,m-1} \\cdot \\color{red} {\\begin{bmatrix}B_{0,0} & \\dotsb & B_{0,l-1} \\\\ \\vdots & \\ddots & \\vdots \\\\ B_{k-1,0} & \\dotsb & B_{k-1,l-1} \\end{bmatrix}}\n",
"\\end{bmatrix}\n",
"= \\\\\n",
"=\n",
"=$$\n",
"$$=\n",
"\\begin{bmatrix}\n",
" A_{0,0} \\cdot \\color{red} {B_{0,0}} & \\dotsb & A_{0,0} \\cdot \\color{red} {B_{0,l-1}} & \\dotsb & A_{0,m-1} \\cdot \\color{blue} {B_{0,0}} & \\dotsb & A_{0,m-1} \\cdot \\color{blue} {B_{0,l-1}} \\\\\n",
" \\vdots & \\ddots & \\vdots & \\dotsb & \\vdots & \\ddots & \\vdots \\\\\n",
Expand Down
Loading