Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add anthropic models #788

Merged
merged 2 commits into from
Oct 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions packages/core/package.json
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
"web-tree-sitter": "0.22.2"
},
"devDependencies": {
"@anthropic-ai/sdk": "^0.29.2",
"@azure/identity": "^4.5.0",
"@huggingface/jinja": "^0.3.1",
"@octokit/plugin-paginate-rest": "^11.3.5",
Expand Down
351 changes: 351 additions & 0 deletions packages/core/src/anthropic.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,351 @@
import { ChatCompletionHandler, LanguageModel, LanguageModelInfo } from "./chat"
import { ANTHROPIC_MAX_TOKEN, MODEL_PROVIDER_ANTHROPIC } from "./constants"
import { LanguageModelConfiguration } from "./host"
import { parseModelIdentifier } from "./models"
import { serializeError } from "./error"
import { estimateTokens } from "./tokens"
import { resolveTokenEncoder } from "./encoders"
import Anthropic from "@anthropic-ai/sdk"

import {
ChatCompletionResponse,
ChatCompletionToolCall,
ChatCompletionUsage,
} from "./chattypes"
// Add this line after the import
import * as OpenAI from "./chattypes"

import { logError } from "./util"
import { ChatCompletionMessageToolCall } from "openai/resources/index.mjs"
Copy link
Member

@pelikhan pelikhan Oct 21, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

all the openai types are redefined in "chattypes.ts"

historical reasons: genaiscript used to crossbuild for vscode and the openai sdk was node only so we do import type on their interfaces.


const convertFinishReason = (
stopReason: Anthropic.Message["stop_reason"]
): OpenAI.ChatCompletionResponse["finishReason"] => {
switch (stopReason) {
case "end_turn":
return "stop"
case "max_tokens":
return "length"
case "stop_sequence":
return "stop"
case "tool_use":
return "tool_calls"
default:
return undefined
}
}

const convertUsage = (
usage: Anthropic.Usage | undefined
): OpenAI.ChatCompletionUsage | undefined => {
if (!usage) return undefined
return {
prompt_tokens: usage.input_tokens,
completion_tokens: usage.output_tokens,
total_tokens: usage.input_tokens + usage.output_tokens,
} satisfies OpenAI.ChatCompletionUsage
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nice, i should start using this one

}
const adjustUsage = (
usage: ChatCompletionUsage,
outputTokens: Anthropic.MessageDeltaUsage
): ChatCompletionUsage => {
return {
...usage,
completion_tokens: usage.completion_tokens + outputTokens.output_tokens,
total_tokens: usage.total_tokens + outputTokens.output_tokens,
}
}

const convertMessages = (
messages: OpenAI.ChatCompletionMessageParam[]
): Array<Anthropic.Messages.MessageParam> => {
return messages.map(convertSingleMessage)
}

const convertSingleMessage = (
msg: OpenAI.ChatCompletionMessageParam
): Anthropic.Messages.MessageParam => {
if (!("role" in msg)) {
// Handle AICIRequest or other custom types
return {
role: "user",
content: [{ type: "text", text: JSON.stringify(msg) }],
}
}

if (msg.role === "assistant" && Array.isArray(msg.tool_calls)) {
return convertToolCallMessage({
...msg,
tool_calls: msg.tool_calls,
})
}

if (msg.role === "tool") {
return convertToolResultMessage(msg)
}

return convertStandardMessage(msg)
}

const convertToolCallMessage = (
msg: OpenAI.ChatCompletionMessageParam & {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

you want ChatCompletionAssistantMessageParam

role: "assistant"
tool_calls: ChatCompletionMessageToolCall[]
}
): Anthropic.Messages.MessageParam => {
return {
role: "assistant",
content: msg.tool_calls.map((tool) => ({
type: "tool_use",
id: tool.id,
input: JSON.parse(tool.function.arguments),
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ChatCompletionToolCall arguments is a string. The parsing happens later and handles malformed JSON.

name: tool.function.name,
})),
}
}

const convertToolResultMessage = (
msg: OpenAI.ChatCompletionMessageParam & {
role: "tool"
tool_call_id: string
}
): Anthropic.Messages.MessageParam => {
return {
role: "user",
content: [
{
type: "tool_result",
tool_use_id: msg.tool_call_id,
content: msg.content,
},
],
}
}

const convertStandardMessage = (
msg: OpenAI.ChatCompletionMessageParam & { role: string }
): Anthropic.Messages.MessageParam => {
const role = msg.role === "assistant" ? "assistant" : "user"
if (Array.isArray(msg.content)) {
return {
role,
content: msg.content.map(convertContentBlock),
}
} else {
return {
role,
content: [{ type: "text", text: msg.content }],
}
}
}

const convertContentBlock = (
block: OpenAI.ChatCompletionMessageParam["content"][number]
): Anthropic.Messages.TextBlockParam | Anthropic.Messages.ImageBlockParam => {
if (typeof block === "string") {
return { type: "text", text: block }
}
if (block.type === "text") {
return { type: "text", text: block.text }
}
if (block.type === "image_url") {
return convertImageUrlBlock(block)
}
// Handle other types or return a default
return { type: "text", text: JSON.stringify(block) }
}

const convertImageUrlBlock = (block: {
type: "image_url"
image_url: { url: string }
}): Anthropic.Messages.ImageBlockParam => {
return {
type: "image",
source: {
type: "base64",
media_type: block.image_url.url.startsWith("data:image/png")
? "image/png"
: "image/jpeg",
data: block.image_url.url.split(",")[1],
},
}
}

const convertTools = (
tools?: OpenAI.ChatCompletionTool[]
): Anthropic.Messages.Tool[] | undefined => {
if (!tools) return undefined
return tools.map(
(tool) =>
({
name: tool.function.name,
description: tool.function.description,
input_schema: {
type: "object",
...tool.function.parameters,
},
}) satisfies Anthropic.Messages.Tool
)
}

export const AnthropicChatCompletion: ChatCompletionHandler = async (
req,
cfg,
options,
trace
) => {
const { requestOptions, partialCb, cancellationToken, inner } = options
const { headers } = requestOptions || {}
const { model } = parseModelIdentifier(req.model)
const encoder = await resolveTokenEncoder(model)

const anthropic = new Anthropic({
baseURL: cfg.base,
apiKey: cfg.token,
})

trace.itemValue(`url`, `[${anthropic.baseURL}](${anthropic.baseURL})`)
const messages = convertMessages(req.messages)

let numTokens = 0
let chatResp = ""
let chunkContent = ""
let finishReason: ChatCompletionResponse["finishReason"]
let usage: ChatCompletionResponse["usage"] | undefined
const toolCalls: ChatCompletionToolCall[] = []

try {
const stream = anthropic.messages.stream({
model,
messages,
max_tokens: req.max_tokens || ANTHROPIC_MAX_TOKEN,
temperature: req.temperature,
top_p: req.top_p,
stream: true,
tools: convertTools(req.tools),
...headers,
})

for await (const chunk of stream) {
if (cancellationToken?.isCancellationRequested) {
finishReason = "cancel"
break
}

switch (chunk.type) {
case "message_start":
usage = convertUsage(chunk.message.usage)
break

case "content_block_start":
if (chunk.content_block.type === "tool_use") {
toolCalls[chunk.index] = {
id: chunk.content_block.id,
name: chunk.content_block.name,
arguments: "",
}
}
break

case "content_block_delta":
switch (chunk.delta.type) {
case "text_delta":
chunkContent = chunk.delta.text
numTokens += estimateTokens(chunkContent, encoder)
chatResp += chunkContent
trace.appendToken(chunkContent)
break

case "input_json_delta":
toolCalls[chunk.index].arguments +=
chunk.delta.partial_json
}
break

case "message_delta":
if (chunk.delta.stop_reason) {
finishReason = convertFinishReason(
chunk.delta.stop_reason
)
}
if (chunk.usage) {
usage = adjustUsage(usage, chunk.usage)
}
break
}

partialCb?.({
responseSoFar: chatResp,
tokensSoFar: numTokens,
responseChunk: chunkContent,
inner,
})
}
} catch (e) {
finishReason = "fail"
logError(e)
trace.error("error while processing event", serializeError(e))
}

trace.appendContent("\n\n")
trace.itemValue(`🏁 finish reason`, finishReason)

return {
text: chatResp,
finishReason,
usage,
toolCalls: toolCalls.filter((x) => x !== undefined),
}
}

async function listModels(
_: LanguageModelConfiguration
): Promise<LanguageModelInfo[]> {
// Anthropic doesn't expose an API to list models, so we return a static list
// based on the Model type defined in the Anthropic SDK
const models: Array<{ id: Anthropic.Model; details: string }> = [
{
id: "claude-3-5-sonnet-20240620",
details:
"Latest Claude 3 Sonnet model with improved capabilities and knowledge cutoff in June 2024.",
},
{
id: "claude-3-opus-20240229",
details:
"Most capable Claude 3 model, excelling at highly complex tasks. Knowledge cutoff in February 2024.",
},
{
id: "claude-3-sonnet-20240229",
details:
"Balanced Claude 3 model offering strong performance and speed. Knowledge cutoff in February 2024.",
},
{
id: "claude-3-haiku-20240307",
details:
"Fastest Claude 3 model, optimized for quick responses. Knowledge cutoff in March 2024.",
},
{
id: "claude-2.1",
details:
"Improved version of Claude 2, with enhanced capabilities and reliability.",
},
{
id: "claude-2.0",
details:
"Original Claude 2 model with strong general capabilities.",
},
{
id: "claude-instant-1.2",
details:
"Fast and cost-effective model for simpler tasks and high-volume use cases.",
},
]

return models.map(({ id, details }) => ({ id, details }))
}

export const AnthropicModel = Object.freeze<LanguageModel>({
completer: AnthropicChatCompletion,
id: MODEL_PROVIDER_ANTHROPIC,
listModels,
})
Loading
Loading