-
Notifications
You must be signed in to change notification settings - Fork 2.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Run ddg-da successfully * Support include valid; More parameters * Support L2 reg & visualization * Blackformat * Enable fill_method * Support specify handler & optim dataset * Fix Pylint
- Loading branch information
Showing
17 changed files
with
457 additions
and
39 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
import pickle | ||
import numpy as np | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
import seaborn as sns | ||
|
||
sns.set(color_codes=True) | ||
plt.rcParams["font.sans-serif"] = "SimHei" | ||
plt.rcParams["axes.unicode_minus"] = False | ||
from tqdm.auto import tqdm | ||
|
||
# tqdm.pandas() # for progress_apply | ||
# %matplotlib inline | ||
# %load_ext autoreload | ||
|
||
|
||
# # Meta Input | ||
|
||
# + | ||
with open("./internal_data_s20.pkl", "rb") as f: | ||
data = pickle.load(f) | ||
|
||
data.data_ic_df.columns.names = ["start_date", "end_date"] | ||
|
||
data_sim = data.data_ic_df.droplevel(axis=1, level="end_date") | ||
|
||
data_sim.index.name = "test datetime" | ||
# - | ||
|
||
plt.figure(figsize=(40, 20)) | ||
sns.heatmap(data_sim) | ||
|
||
plt.figure(figsize=(40, 20)) | ||
sns.heatmap(data_sim.rolling(20).mean()) | ||
|
||
# # Meta Model | ||
|
||
from qlib import auto_init | ||
|
||
auto_init() | ||
from qlib.workflow import R | ||
|
||
exp = R.get_exp(experiment_name="DDG-DA") | ||
meta_rec = exp.list_recorders(rtype="list", max_results=1)[0] | ||
meta_m = meta_rec.load_object("model") | ||
|
||
pd.DataFrame(meta_m.tn.twm.linear.weight.detach().numpy()).T[0].plot() | ||
|
||
pd.DataFrame(meta_m.tn.twm.linear.weight.detach().numpy()).T[0].rolling(5).mean().plot() | ||
|
||
# # Meta Output | ||
|
||
# + | ||
with open("./tasks_s20.pkl", "rb") as f: | ||
tasks = pickle.load(f) | ||
|
||
task_df = {} | ||
for t in tasks: | ||
test_seg = t["dataset"]["kwargs"]["segments"]["test"] | ||
if None not in test_seg: | ||
# The last rolling is skipped. | ||
task_df[test_seg] = t["reweighter"].time_weight | ||
task_df = pd.concat(task_df) | ||
|
||
task_df.index.names = ["OS_start", "OS_end", "IS_start", "IS_end"] | ||
task_df = task_df.droplevel(["OS_end", "IS_end"]) | ||
task_df = task_df.unstack("OS_start") | ||
# - | ||
|
||
plt.figure(figsize=(40, 20)) | ||
sns.heatmap(task_df.T) | ||
|
||
plt.figure(figsize=(40, 20)) | ||
sns.heatmap(task_df.rolling(10).mean().T) | ||
|
||
# # Sub Models | ||
# | ||
# NOTE: | ||
# - this section assumes that the model is Linear model!! | ||
# - Other models does not support this analysis | ||
|
||
exp = R.get_exp(experiment_name="rolling_ds") | ||
|
||
|
||
def show_linear_weight(exp): | ||
coef_df = {} | ||
for r in exp.list_recorders("list"): | ||
t = r.load_object("task") | ||
if None in t["dataset"]["kwargs"]["segments"]["test"]: | ||
continue | ||
m = r.load_object("params.pkl") | ||
coef_df[t["dataset"]["kwargs"]["segments"]["test"]] = pd.Series(m.coef_) | ||
|
||
coef_df = pd.concat(coef_df) | ||
|
||
coef_df.index.names = ["test_start", "test_end", "coef_idx"] | ||
|
||
coef_df = coef_df.droplevel("test_end").unstack("coef_idx").T | ||
|
||
plt.figure(figsize=(40, 20)) | ||
sns.heatmap(coef_df) | ||
plt.show() | ||
|
||
|
||
show_linear_weight(R.get_exp(experiment_name="rolling_ds")) | ||
|
||
show_linear_weight(R.get_exp(experiment_name="rolling_models")) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.