Skip to content

mixcoder/tensorflow-tutorial

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 

Repository files navigation

TensorFlow and Deep Learning Tutorials



Google's Deep Learning Tutorials

Deep Learning Reading List

Tutorial index

0 - Prerequisite

  • Introduction to Machine Learning (notebook)
  • Introduction to MNIST Dataset (notebook)

1 - Introduction

2 - Basic Models

3 - Neural Networks

4 - Utilities

  • Save and Restore a model (notebook) (code)
  • Tensorboard - Graph and loss visualization (notebook) (code)
  • Tensorboard - Advanced visualization (code)

5 - Multi GPU

Dataset

Some examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

Official Website: http://yann.lecun.com/exdb/mnist/

Selected Repositories

Examples

Basics

  • Multi-layer perceptron (MNIST). A multi-layer perceptron implementation for MNIST classification task, see tutorial_mnist_simple.py here.

Computer Vision

  • Denoising Autoencoder (MNIST). A multi-layer perceptron implementation for MNIST classification task, see tutorial_mnist.py here.
  • Stacked Denoising Autoencoder and Fine-Tuning (MNIST). A multi-layer perceptron implementation for MNIST classification task, see tutorial_mnist.py here.
  • Convolutional Network (MNIST). A Convolutional neural network implementation for classifying MNIST dataset, see tutorial_mnist.py here.
  • Convolutional Network (CIFAR-10). A Convolutional neural network implementation for classifying CIFAR-10 dataset, see tutorial_cifar10.py here.
  • VGG 16 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see tutorial_vgg16.py here.
  • VGG 19 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see tutorial_vgg19.py here.

Natural Language Processing

  • Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see tutorial_ptb_lstm.py here.
  • Word Embedding - Word2vec. Train a word embedding matrix, see tutorial_word2vec_basic.py here.
  • Restore Embedding matrix. Restore a pre-train embedding matrix, see tutorial_generate_text.py here.
  • Text Generation. Generates new text scripts, using LSTM network, see tutorial_generate_text.py here.
  • Machine Translation (WMT). Translate English to French. Apply Attention mechanism and Seq2seq to WMT English-to-French translation data, see tutorial_translate.py here.

Reinforcement Learning

  • Deep Reinforcement Learning - Pong Game. Teach a machine to play Pong games, see tutorial_atari_pong.py here.

About

TensorFlow and Deep Learning Tutorials

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published