-
-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
105 additions
and
195 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,236 +1,142 @@ | ||
check_frozen = torch_callback("custom_logger", | ||
initialize = function(alpha = 0.1) { | ||
check_frozen = torch_callback("check_frozen", | ||
initialize = function(starting_weights, unfreeze) { | ||
self$starting_weights = starting_weights | ||
# consider supporting character vectors | ||
self$unfreeze = unfreeze | ||
}, | ||
on_epoch_end = function() { | ||
if (self$ctx$epoch %in% self$unfreeze$epoch) { | ||
weights = (self$unfreeze[epoch == self$ctx$epoch]$unfreeze)[[1]](names(self$ctx$network$parameters)) | ||
print(self$ctx$network$parameters[weights]$requires_grad) | ||
if ("epoch" %in% names(self$unfreeze)) { | ||
if (self$ctx$epoch %in% self$unfreeze$epoch) { | ||
weights = (self$unfreeze[epoch == self$ctx$epoch]$unfreeze)[[1]](names(self$ctx$network$parameters)) | ||
walk(self$ctx$network$parameters[weights], function(param) print(param$requires_grad)) | ||
} | ||
} | ||
}, | ||
on_batch_end = function() { | ||
batch_num = (self$ctx$epoch - 1) * length(self$ctx$loader_train) + self$ctx$step | ||
if (batch_num %in% self$unfreeze$batch) { | ||
weights = (self$unfreeze[batch == batch_num]$unfreeze)[[1]](names(self$ctx$network$parameters)) | ||
print(self$ctx$network$parameters[weights]$requires_grad) | ||
if ("batch" %in% names(self$unfreeze)) { | ||
batch_num = (self$ctx$epoch - 1) * length(self$ctx$loader_train) + self$ctx$step | ||
if (batch_num %in% self$unfreeze$batch) { | ||
weights = (self$unfreeze[batch == batch_num]$unfreeze)[[1]](names(self$ctx$network$parameters)) | ||
walk(self$ctx$network$parameters[weights], function(param) print(param$requires_grad)) | ||
} | ||
} | ||
} | ||
) | ||
|
||
test_that("autotest", { | ||
cb = t_clbk("unfreeze", | ||
cb = t_clbk("unfreeze", | ||
starting_weights = select_all(), | ||
unfreeze = data.table() | ||
) | ||
expect_torch_callback(cb, check_man = TRUE) | ||
}) | ||
|
||
test_that("unfreezing on epochs works in the end", { | ||
# test_that("unfreezing on epochs works in the end", { | ||
# n_epochs = 10 | ||
# | ||
# task = tsk("iris") | ||
# | ||
# mlp = lrn("classif.mlp", | ||
# callbacks = t_clbk("unfreeze"), | ||
# epochs = 10, batch_size = 150, neurons = c(100, 200, 300) | ||
# ) | ||
# | ||
# mlp$param_set$set_values(cb.unfreeze.starting_weights = select_invert(select_name(c("0.weight", "3.weight")))) | ||
# | ||
# mlp$param_set$set_values(cb.unfreeze.unfreeze = data.table( | ||
# epoch = 2, | ||
# unfreeze = select_name("0.weight") | ||
# ) | ||
# ) | ||
# | ||
# mlp$train(task) | ||
# | ||
# expect_true(mlp$network$parameters[[select_name("0.weight")(names(mlp$network$parameters))]]$requires_grad) | ||
# expect_false(mlp$network$parameters[[select_name("3.weight")(names(mlp$network$parameters))]]$requires_grad) | ||
# }) | ||
# | ||
# test_that("unfreezing on batches works in the end", { | ||
# n_epochs = 10 | ||
# | ||
# task = tsk("iris") | ||
# | ||
# mlp = lrn("classif.mlp", | ||
# callbacks = t_clbk("unfreeze"), | ||
# epochs = 10, batch_size = 50, neurons = c(100, 200, 300) | ||
# ) | ||
# | ||
# mlp$param_set$set_values(cb.unfreeze.starting_weights = select_invert(select_name(c("0.weight", "3.weight")))) | ||
# | ||
# mlp$param_set$set_values(cb.unfreeze.unfreeze = data.table( | ||
# batch = 2, | ||
# unfreeze = select_name("0.weight") | ||
# ) | ||
# ) | ||
# | ||
# mlp$train(task) | ||
# | ||
# expect_true(mlp$network$parameters[[select_name("0.weight")(names(mlp$network$parameters))]]$requires_grad) | ||
# expect_false(mlp$network$parameters[[select_name("3.weight")(names(mlp$network$parameters))]]$requires_grad) | ||
# }) | ||
|
||
test_that("freezing with epochs works at the correct time", { | ||
n_epochs = 10 | ||
|
||
task = tsk("iris") | ||
|
||
mlp = lrn("classif.mlp", | ||
callbacks = t_clbk("unfreeze"), | ||
epochs = 10, batch_size = 150, neurons = c(100, 200, 300) | ||
callbacks = list(t_clbk("unfreeze"), check_frozen), | ||
epochs = 10, batch_size = 50, neurons = c(100, 200, 300) | ||
) | ||
|
||
mlp$param_set$set_values(cb.unfreeze.starting_weights = select_invert(select_name(c("0.weight", "3.weight")))) | ||
frozen_weights_at_start = c("0.weight", "0.bias", "3.bias", "3.weight") | ||
|
||
mlp$param_set$set_values(cb.unfreeze.starting_weights = select_invert(select_name(frozen_weights_at_start))) | ||
mlp$param_set$set_values(cb.unfreeze.unfreeze = data.table( | ||
epoch = 2, | ||
unfreeze = select_name("0.weight") | ||
epoch = seq_along(frozen_weights_at_start), | ||
unfreeze = map(frozen_weights_at_start, function(name) select_name(name)) | ||
) | ||
) | ||
|
||
mlp$train(task) | ||
mlp$param_set$set_values(cb.check_frozen.starting_weights = select_invert(select_name(frozen_weights_at_start))) | ||
mlp$param_set$set_values(cb.check_frozen.unfreeze = data.table( | ||
epoch = seq_along(frozen_weights_at_start), | ||
unfreeze = map(frozen_weights_at_start, function(name) select_name(name)) | ||
) | ||
) | ||
|
||
expect_true(mlp$network$parameters[[select_name("0.weight")(names(mlp$network$parameters))]]$requires_grad) | ||
expect_false(mlp$network$parameters[[select_name("3.weight")(names(mlp$network$parameters))]]$requires_grad) | ||
train_output = capture_output(mlp$train(task)) | ||
expect_match(train_output, "TRUE") | ||
expect_no_match(train_output, "FALSE") | ||
}) | ||
|
||
test_that("unfreezing on batches works in the end", { | ||
test_that("freezing with batches works at the correct time", { | ||
n_epochs = 10 | ||
|
||
task = tsk("iris") | ||
|
||
mlp = lrn("classif.mlp", | ||
callbacks = t_clbk("unfreeze"), | ||
callbacks = list(t_clbk("unfreeze"), check_frozen), | ||
epochs = 10, batch_size = 50, neurons = c(100, 200, 300) | ||
) | ||
|
||
mlp$param_set$set_values(cb.unfreeze.starting_weights = select_invert(select_name(c("0.weight", "3.weight")))) | ||
frozen_weights_at_start = c("0.weight", "0.bias", "3.bias", "3.weight") | ||
|
||
mlp$param_set$set_values(cb.unfreeze.starting_weights = select_invert(select_name(frozen_weights_at_start))) | ||
mlp$param_set$set_values(cb.unfreeze.unfreeze = data.table( | ||
batch = 2, | ||
unfreeze = select_name("0.weight") | ||
) | ||
batch = seq_along(frozen_weights_at_start), | ||
unfreeze = map(frozen_weights_at_start, function(name) select_name(name)) | ||
) | ||
|
||
mlp$train(task) | ||
|
||
expect_true(mlp$network$parameters[[select_name("0.weight")(names(mlp$network$parameters))]]$requires_grad) | ||
expect_false(mlp$network$parameters[[select_name("3.weight")(names(mlp$network$parameters))]]$requires_grad) | ||
}) | ||
|
||
test_that("freezing both with batches and epochs works at the correct time", { | ||
n_epochs = 10 | ||
|
||
task = tsk("iris") | ||
|
||
mlp = lrn("classif.mlp", | ||
callbacks = list(t_clbk("unfreeze"), check_frozen), | ||
epochs = 10, batch_size = 150, neurons = c(100, 200, 300) | ||
) | ||
|
||
# mlp$param_set$set_values(cb.unfreeze.starting_weights = select_invert(select_name(c("0.weight", "3.weight")))) | ||
|
||
# mlp$param_set$set_values(cb.unfreeze.unfreeze = data.table( | ||
# epoch = 2, | ||
# unfreeze = select_name("0.weight") | ||
# ) | ||
# ) | ||
|
||
# mlp$train(task) | ||
mlp$param_set$set_values(cb.check_frozen.starting_weights = select_invert(select_name(frozen_weights_at_start))) | ||
mlp$param_set$set_values(cb.check_frozen.unfreeze = data.table( | ||
batch = seq_along(frozen_weights_at_start), | ||
unfreeze = map(frozen_weights_at_start, function(name) select_name(name)) | ||
) | ||
) | ||
|
||
# expect_true(mlp$network$parameters[[select_name("0.weight")(names(mlp$network$parameters))]]$requires_grad) | ||
# expect_false(mlp$network$parameters[[select_name("3.weight")(names(mlp$network$parameters))]]$requires_grad) | ||
train_output = capture_output(mlp$train(task)) | ||
expect_match(train_output, "TRUE") | ||
expect_no_match(train_output, "FALSE") | ||
}) | ||
|
||
|
||
# # realistic example using epochs | ||
# # TODO: write a custom callback that accesses the requires_grad of a parameter | ||
# # you can actually write a test for this callback as well | ||
# # such as: | ||
# test_that("weights are frozen correctly using epochs", { | ||
# n_epochs = 10 | ||
|
||
# task = tsk("iris") | ||
|
||
# mlp = lrn("classif.mlp", | ||
# callbacks = t_clbk("unfreeze"), | ||
# epochs = 10, batch_size = 150, neurons = c(100, 200, 300) | ||
# ) | ||
|
||
# mlp$param_set$set_values(cb.unfreeze.starting_weights = selectorparam_all()) | ||
# # mlp$param_set$set_values(cb.unfreeze.unfreeze = data.table( | ||
# # epoch = c(2, 4), | ||
# # unfreeze = list(selectorparam_grep("9"), selectorparam_)) | ||
# # ) | ||
# mlp$param_set$set_values(cb.unfreeze.unfreeze = data.table()) | ||
|
||
# mlp$train(task) | ||
|
||
# expect_true(all(mlr3misc::map_lgl(mlp$network$parameters, function(param) param$requires_grad))) | ||
|
||
# # # begin LLM | ||
# # # Test with simple layer selection | ||
# # mlp$param_set$set_values( | ||
# # cb.unfreeze.starting_weights = selectorparam_name(c("9.weight", "9.bias")), | ||
# # cb.unfreeze.unfreeze = data.table( | ||
# # weights = list(selectorparam_name("layer2")), | ||
# # epochs = 2 | ||
# # ) | ||
# # ) | ||
|
||
# # # Verify initial frozen state | ||
# # expect_false(mlp$model$layer2$requires_grad) | ||
# # expect_true(mlp$model$layer1$requires_grad) | ||
|
||
# # # Train for 3 epochs | ||
# # mlp$train(task) | ||
# # expect_true(mlp$model$layer2$requires_grad) | ||
# # # end LLM | ||
# }) | ||
|
||
# test_that("weights are frozen correctly using batches", { | ||
# cb = t_clbk("unfreeze") | ||
# n_epochs = 10 | ||
|
||
# mlp = lrn("classif.mlp", | ||
# callbacks = t_clbk("tb"), | ||
# epochs = 10, batch_size = 150, neurons = c(100, 200, 300) | ||
# ) | ||
|
||
# # # begin LLM | ||
# # # Test with multiple layer unfreezing | ||
# # mlp$param_set$set_values( | ||
# # cb.unfreeze.starting_weights = selector_none(), | ||
# # cb.unfreeze.unfreeze = data.table( | ||
# # weights = list( | ||
# # selector_name("layer1"), | ||
# # selector_name("layer2") | ||
# # ), | ||
# # batches = c(10, 20) | ||
# # ) | ||
# # ) | ||
|
||
# # # Verify all layers start frozen | ||
# # expect_false(mlp$model$layer1$requires_grad) | ||
# # expect_false(mlp$model$layer2$requires_grad) | ||
|
||
# # mlp$train(task) | ||
# # expect_true(mlp$model$layer1$requires_grad) | ||
# # expect_true(mlp$model$layer2$requires_grad) | ||
# # # end LLM | ||
# }) | ||
|
||
# # TODO: decide whether we want to test this (Copilot suggestion) | ||
# test_that("invalid configurations throw errors", { | ||
# cb = t_clbk("unfreeze") | ||
|
||
# expect_error( | ||
# cb$param_set$set_values( | ||
# starting_weights = "invalid_selector", | ||
# unfreeze = data.table(weights = list(), epochs = numeric()) | ||
# ), | ||
# "must be a Selector" | ||
# ) | ||
|
||
# expect_error( | ||
# cb$param_set$set_values( | ||
# starting_weights = selector_none(), | ||
# unfreeze = data.table(weights = list(), invalid_column = numeric()) | ||
# ), | ||
# "must contain either 'epochs' or 'batches'" | ||
# ) | ||
# }) | ||
|
||
# # TODO: decide whether we want to test this (Copilot suggestion) | ||
# test_that("gradual unfreezing works correctly", { | ||
# cb = t_clbk("unfreeze") | ||
# n_epochs = 5 | ||
|
||
# mlp = lrn("classif.mlp", | ||
# callbacks = cb, | ||
# epochs = n_epochs, batch_size = 150, neurons = 10, | ||
# validate = 0.2, | ||
# measures_valid = msrs(c("classif.acc", "classif.ce")), | ||
# measures_train = msrs(c("classif.acc", "classif.ce")) | ||
# ) | ||
|
||
# mlp$param_set$set_values( | ||
# cb.unfreeze.starting_weights = selector_none(), | ||
# cb.unfreeze.unfreeze = data.table( | ||
# weights = list( | ||
# selector_name("layer1"), | ||
# selector_name("layer2"), | ||
# selector_name("layer3") | ||
# ), | ||
# epochs = c(1, 2, 3) | ||
# ) | ||
# ) | ||
|
||
# # Check initial state | ||
# expect_false(mlp$model$layer1$requires_grad) | ||
# expect_false(mlp$model$layer2$requires_grad) | ||
# expect_false(mlp$model$layer3$requires_grad) | ||
|
||
# # Train and check progressive unfreezing | ||
# mlp$train(task) | ||
# expect_true(mlp$model$layer1$requires_grad) | ||
# expect_true(mlp$model$layer2$requires_grad) | ||
# expect_true(mlp$model$layer3$requires_grad) | ||
# }) |