Jinyoung Park, Minseong Bae, Dohwan Ko, Hyunwoo J. Kim.
Official PyTorch implementation of the "LLaMo: Large Language Model-based Molecular Graph Assistant". (NeurIPS 2024)- Release the code.
- Refactoring code to incorporate the huggingface.
- Release the pre-trained huggingface model.
To install requirements, run:
git clone https://github.com/mlvlab/LLaMo.git
cd LLaMo
conda create -n llamo python==3.9
conda activate llamo
pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
We utilized the pre-trained graph encoder checkpoint from the link repository. Place the download graph model in the `MoleculeSTM/' folder.
You can update the training config in the config_file
folder.
python train.py --root_train 'data/MoleculeDesc/' --root_eval 'data/MoleculeDesc/' --devices '0,1,2,3' --filename "stage1" --max_epochs 3 --mode train --inference_batch_size 16 --batch_size 4 --config_file config_file/stage1.yaml --accumulate_grad_batches 4
python train.py --root_train 'data/instruction_tuning/' --root_eval 'data/MoleculeDesc/' --devices '0,1,2,3' --filename "stage2" --max_epochs 3 --mode train --inference_batch_size 16 --batch_size 4 --config_file config_file/stage2.yaml --accumulate_grad_batches 4 --stage_path "./all_checkpoints/stage1/last.ckpt"
If you have any questions, please create an issue on this repository or contact at [email protected].
If you find our work interesting, please consider giving a ⭐ and citation.
@inproceedings{park2024llamo,
title={LLaMo: Large Language Model-based Molecular Graph Assistant},
author={Park, Jinyoung and Bae, Minseong and Ko, Dohwan and Kim, Hyunwoo J},
booktitle={NeurIPS},
year={2024}
}