Skip to content

Latest commit

 

History

History
25 lines (18 loc) · 1.26 KB

README.md

File metadata and controls

25 lines (18 loc) · 1.26 KB

Next-Token-Failures

This is the code used to produce the results presented in the paper https://arxiv.org/abs/2403.06963.

Requirements

The following packages are needed to run the code:

  1. torch 2.2.0
  2. transformers 4.37.2
  3. numpy 1.26.3
  4. tqdm 4.66.1
  5. wandb 0.16.2

Usage

In order to train a GPT-style model from scratch with standard next-token prediction on a star graph with degree 2 and path length 5 with 50 possible node values, run the command

python3 train.py --model gpt --n_layer 6 --n_embd 384 --n_head 6 --n_train 200000 --n_test 20000 --batch_size 256 --dataset graph --deg 2 --path 5 --num_nodes 50 --lr 0.0001

To train the same model using the reverse encoding, add the flag --reverse. In order to train with our teacherless objective, add the flag --teacherless.

To finetune a pre-trained model like GPT2-large, run the command

python3 finetune.py --model gpt2-large --n_train 200000 --n_test 20000 --batch_size 16 --dataset graph --deg 2 --path 5 --num_nodes 50 --lr 0.00001

Similarly, you can finetune a Pythia model using the flag --model pythia-410m-deduped. You can also add the flags for reversing and teacherless training as outlined above.