Skip to content

nasosger/star_graphs_ntp

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Next-Token-Failures

This is the code used to produce the results presented in the paper https://arxiv.org/abs/2403.06963.

Requirements

The following packages are needed to run the code:

  1. torch 2.2.0
  2. transformers 4.37.2
  3. numpy 1.26.3
  4. tqdm 4.66.1
  5. wandb 0.16.2

Usage

In order to train a GPT-style model from scratch with standard next-token prediction on a star graph with degree 2 and path length 5 with 50 possible node values, run the command

python3 train.py --model gpt --n_layer 6 --n_embd 384 --n_head 6 --n_train 200000 --n_test 20000 --batch_size 256 --dataset graph --deg 2 --path 5 --num_nodes 50 --lr 0.0001

To train the same model using the reverse encoding, add the flag --reverse. In order to train with our teacherless objective, add the flag --teacherless.

To finetune a pre-trained model like GPT2-large, run the command

python3 finetune.py --model gpt2-large --n_train 200000 --n_test 20000 --batch_size 16 --dataset graph --deg 2 --path 5 --num_nodes 50 --lr 0.00001

Similarly, you can finetune a Pythia model using the flag --model pythia-410m-deduped. You can also add the flags for reversing and teacherless training as outlined above.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%