Skip to content

Commit

Permalink
test(pageserver): quantify compaction outcome (#7867)
Browse files Browse the repository at this point in the history
A simple API to collect some statistics after compaction to easily
understand the result.

The tool reads the layer map, and analyze range by range instead of
doing single-key operations, which is more efficient than doing a
benchmark to collect the result. It currently computes two key metrics:

* Latest data access efficiency, which finds how many delta layers /
image layers the system needs to iterate before returning any key in a
key range.
* (Approximate) PiTR efficiency, as in
#7770, which is simply the
number of delta files in the range. The reason behind that is, assume no
image layer is created, PiTR efficiency is simply the cost of collect
records from the delta layers, and the replay time. Number of delta
files (or in the future, estimated size of reads) is a simple yet
efficient way of estimating how much effort the page server needs to
reconstruct a page.

Signed-off-by: Alex Chi Z <[email protected]>
  • Loading branch information
skyzh authored Jun 10, 2024
1 parent 3b647cd commit 3e63d0f
Show file tree
Hide file tree
Showing 6 changed files with 151 additions and 0 deletions.
23 changes: 23 additions & 0 deletions pageserver/src/http/routes.rs
Original file line number Diff line number Diff line change
Expand Up @@ -2429,6 +2429,25 @@ async fn list_aux_files(
json_response(StatusCode::OK, files)
}

async fn perf_info(
request: Request<Body>,
_cancel: CancellationToken,
) -> Result<Response<Body>, ApiError> {
let tenant_shard_id: TenantShardId = parse_request_param(&request, "tenant_shard_id")?;
let timeline_id: TimelineId = parse_request_param(&request, "timeline_id")?;
check_permission(&request, Some(tenant_shard_id.tenant_id))?;

let state = get_state(&request);

let timeline =
active_timeline_of_active_tenant(&state.tenant_manager, tenant_shard_id, timeline_id)
.await?;

let result = timeline.perf_info().await;

json_response(StatusCode::OK, result)
}

async fn ingest_aux_files(
mut request: Request<Body>,
_cancel: CancellationToken,
Expand Down Expand Up @@ -2856,5 +2875,9 @@ pub fn make_router(
|r| testing_api_handler("list_aux_files", r, list_aux_files),
)
.post("/v1/top_tenants", |r| api_handler(r, post_top_tenants))
.post(
"/v1/tenant/:tenant_shard_id/timeline/:timeline_id/perf_info",
|r| testing_api_handler("perf_info", r, perf_info),
)
.any(handler_404))
}
1 change: 1 addition & 0 deletions pageserver/src/tenant/timeline.rs
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
pub(crate) mod analysis;
mod compaction;
pub mod delete;
pub(crate) mod detach_ancestor;
Expand Down
90 changes: 90 additions & 0 deletions pageserver/src/tenant/timeline/analysis.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
use std::{collections::BTreeSet, ops::Range};

use utils::lsn::Lsn;

use super::Timeline;

#[derive(serde::Serialize)]
pub(crate) struct RangeAnalysis {
start: String,
end: String,
has_image: bool,
num_of_deltas_above_image: usize,
total_num_of_deltas: usize,
}

impl Timeline {
pub(crate) async fn perf_info(&self) -> Vec<RangeAnalysis> {
// First, collect all split points of the layers.
let mut split_points = BTreeSet::new();
let mut delta_ranges = Vec::new();
let mut image_ranges = Vec::new();

let all_layer_files = {
let guard = self.layers.read().await;
guard.all_persistent_layers()
};
let lsn = self.get_last_record_lsn();

for key in all_layer_files {
split_points.insert(key.key_range.start);
split_points.insert(key.key_range.end);
if key.is_delta {
delta_ranges.push((key.key_range.clone(), key.lsn_range.clone()));
} else {
image_ranges.push((key.key_range.clone(), key.lsn_range.start));
}
}

// For each split range, compute the estimated read amplification.
let split_points = split_points.into_iter().collect::<Vec<_>>();

let mut result = Vec::new();

for i in 0..(split_points.len() - 1) {
let start = split_points[i];
let end = split_points[i + 1];
// Find the latest image layer that contains the information.
let mut maybe_image_layers = image_ranges
.iter()
// We insert split points for all image layers, and therefore a `contains` check for the start point should be enough.
.filter(|(key_range, img_lsn)| key_range.contains(&start) && img_lsn <= &lsn)
.cloned()
.collect::<Vec<_>>();
maybe_image_layers.sort_by(|a, b| a.1.cmp(&b.1));
let image_layer = maybe_image_layers.last().cloned();
let lsn_filter_start = image_layer
.as_ref()
.map(|(_, lsn)| *lsn)
.unwrap_or(Lsn::INVALID);

fn overlaps_with(lsn_range_a: &Range<Lsn>, lsn_range_b: &Range<Lsn>) -> bool {
!(lsn_range_a.end <= lsn_range_b.start || lsn_range_a.start >= lsn_range_b.end)
}

let maybe_delta_layers = delta_ranges
.iter()
.filter(|(key_range, lsn_range)| {
key_range.contains(&start) && overlaps_with(&(lsn_filter_start..lsn), lsn_range)
})
.cloned()
.collect::<Vec<_>>();

let pitr_delta_layers = delta_ranges
.iter()
.filter(|(key_range, _)| key_range.contains(&start))
.cloned()
.collect::<Vec<_>>();

result.push(RangeAnalysis {
start: start.to_string(),
end: end.to_string(),
has_image: image_layer.is_some(),
num_of_deltas_above_image: maybe_delta_layers.len(),
total_num_of_deltas: pitr_delta_layers.len(),
});
}

result
}
}
5 changes: 5 additions & 0 deletions pageserver/src/tenant/timeline/layer_manager.rs
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
use anyhow::{bail, ensure, Context, Result};
use itertools::Itertools;
use pageserver_api::shard::TenantShardId;
use std::{collections::HashMap, sync::Arc};
use tracing::trace;
Expand Down Expand Up @@ -308,6 +309,10 @@ impl LayerManager {
pub(crate) fn contains(&self, layer: &Layer) -> bool {
self.layer_fmgr.contains(layer)
}

pub(crate) fn all_persistent_layers(&self) -> Vec<PersistentLayerKey> {
self.layer_fmgr.0.keys().cloned().collect_vec()
}
}

pub(crate) struct LayerFileManager<T>(HashMap<PersistentLayerKey, T>);
Expand Down
15 changes: 15 additions & 0 deletions test_runner/fixtures/pageserver/http.py
Original file line number Diff line number Diff line change
Expand Up @@ -923,3 +923,18 @@ def top_tenants(
)
self.verbose_error(res)
return res.json() # type: ignore

def perf_info(
self,
tenant_id: Union[TenantId, TenantShardId],
timeline_id: TimelineId,
):
self.is_testing_enabled_or_skip()

log.info(f"Requesting perf info: tenant {tenant_id}, timeline {timeline_id}")
res = self.post(
f"http://localhost:{self.port}/v1/tenant/{tenant_id}/timeline/{timeline_id}/perf_info",
)
log.info(f"Got perf info response code: {res.status_code}")
self.verbose_error(res)
return res.json()
17 changes: 17 additions & 0 deletions test_runner/performance/test_gc_feedback.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,12 +75,29 @@ def test_gc_feedback(neon_env_builder: NeonEnvBuilder, zenbenchmark: NeonBenchma
physical_size = client.timeline_detail(tenant_id, timeline_id)["current_physical_size"]
log.info(f"Physical storage size {physical_size}")

max_num_of_deltas_above_image = 0
max_total_num_of_deltas = 0
for key_range in client.perf_info(tenant_id, timeline_id):
max_total_num_of_deltas = max(max_total_num_of_deltas, key_range["total_num_of_deltas"])
max_num_of_deltas_above_image = max(
max_num_of_deltas_above_image, key_range["num_of_deltas_above_image"]
)

MB = 1024 * 1024
zenbenchmark.record("logical_size", logical_size // MB, "Mb", MetricReport.LOWER_IS_BETTER)
zenbenchmark.record("physical_size", physical_size // MB, "Mb", MetricReport.LOWER_IS_BETTER)
zenbenchmark.record(
"physical/logical ratio", physical_size / logical_size, "", MetricReport.LOWER_IS_BETTER
)
zenbenchmark.record(
"max_total_num_of_deltas", max_total_num_of_deltas, "", MetricReport.LOWER_IS_BETTER
)
zenbenchmark.record(
"max_num_of_deltas_above_image",
max_num_of_deltas_above_image,
"",
MetricReport.LOWER_IS_BETTER,
)

layer_map_path = env.repo_dir / "layer-map.json"
log.info(f"Writing layer map to {layer_map_path}")
Expand Down

1 comment on commit 3e63d0f

@github-actions
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

3280 tests run: 3128 passed, 0 failed, 152 skipped (full report)


Code coverage* (full report)

  • functions: 31.5% (6603 of 20963 functions)
  • lines: 48.5% (51070 of 105401 lines)

* collected from Rust tests only


The comment gets automatically updated with the latest test results
3e63d0f at 2024-06-10T10:06:51.464Z :recycle:

Please sign in to comment.