Skip to content

Commit

Permalink
deploy: f92fd3f
Browse files Browse the repository at this point in the history
  • Loading branch information
liruilong940607 committed Aug 3, 2024
1 parent c230a89 commit 7be9161
Show file tree
Hide file tree
Showing 17 changed files with 257 additions and 64 deletions.
Binary file modified main/.doctrees/apis/rasterization.doctree
Binary file not shown.
Binary file modified main/.doctrees/environment.pickle
Binary file not shown.
Binary file modified main/.doctrees/examples/colmap.doctree
Binary file not shown.
Binary file modified main/.doctrees/examples/large_scale.doctree
Binary file not shown.
Binary file modified main/.doctrees/index.doctree
Binary file not shown.
Binary file modified main/.doctrees/tests/eval.doctree
Binary file not shown.
224 changes: 188 additions & 36 deletions main/_modules/gsplat/rendering.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion main/_sources/examples/colmap.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ Simply run the script under `examples/`:

.. code-block:: bash
python simple_trainer.py \
CUDA_VISIBLE_DEVICES=0 python simple_trainer.py \
--data_dir data/360_v2/garden/ --data_factor 4 \
--result_dir ./results/garden
Expand Down
2 changes: 1 addition & 1 deletion main/_sources/examples/large_scale.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ The code for this example can be found under `examples/`:
.. code-block:: bash
# First train a 3DGS model
python simple_trainer.py \
CUDA_VISIBLE_DEVICES=0 python simple_trainer.py \
--data_dir data/360_v2/garden/ --data_factor 4 \
--result_dir ./results/garden
Expand Down
16 changes: 12 additions & 4 deletions main/_sources/index.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -13,13 +13,21 @@ Overview
Real-Time Rendering of Radiance Fields" :cite:p:`kerbl3Dgaussians`, but we've made *gsplat* even
faster, more memory efficient, and with a growing list of new features!

* *gsplat* is developed with efficiency in mind. Comparing to the `official implementation <https://github.com/graphdeco-inria/gaussian-splatting>`_, *gsplat* enables up to **4x less training memory footprint**, and up to **15% less training time** on Mip-NeRF 360 captures, and potential more on larger scenes. See :doc:`tests/eval` for details.
* *gsplat* is developed with efficiency in mind. Comparing to the `official implementation <https://github.com/graphdeco-inria/gaussian-splatting>`_,
*gsplat* enables up to **4x less training memory footprint**, and up to **15% less training time** on Mip-NeRF 360 captures, and potential more on larger scenes. See :doc:`tests/eval` for details.

* *gsplat* is designed to **support extremely large scene rendering**, which is magnitudes faster than the official CUDA backend `diff-gaussian-rasterization <https://github.com/graphdeco-inria/diff-gaussian-rasterization>`_. See :doc:`examples/large_scale` for an example.
* *gsplat* is designed to **support extremely large scene rendering**, which is magnitudes
faster than the official CUDA backend `diff-gaussian-rasterization <https://github.com/graphdeco-inria/diff-gaussian-rasterization>`_. See :doc:`examples/large_scale` for an example.

* *gsplat* offers many extra features, including **batch rasterization**, **N-D feature rendering**, **depth rendering**, **sparse gradient** etc. See :doc:`apis/rasterization` for details.
* *gsplat* offers many extra features, including **batch rasterization**,
**N-D feature rendering**, **depth rendering**, **sparse gradient**,
**multi-GPU distributed rasterization**
etc. See :doc:`apis/rasterization` for details.

* *gsplat* is equipped with the **latest and greatest** 3D Gaussian Splatting techniques, including `absgrad <https://ty424.github.io/AbsGS.github.io/>`_, `anti-aliasing <https://niujinshuchong.github.io/mip-splatting/>`_ etc. And more to come!
* *gsplat* is equipped with the **latest and greatest** 3D Gaussian Splatting techniques,
including `absgrad <https://ty424.github.io/AbsGS.github.io/>`_,
`anti-aliasing <https://niujinshuchong.github.io/mip-splatting/>`_,
`3DGS-MCMC <https://ubc-vision.github.io/3dgs-mcmc/>`_ etc. And more to come!


.. raw:: html
Expand Down
26 changes: 14 additions & 12 deletions main/_sources/tests/eval.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,17 +3,19 @@ Evaluation

.. table:: Performance on `Mip-NeRF 360 Captures <https://jonbarron.info/mipnerf360/>`_ (Averaged Over 7 Scenes)

+------------+-------+-------+-------+------------------+------------+
| | PSNR | SSIM | LPIPS | Train Mem | Train Time |
+============+=======+=======+=======+==================+============+
| inria-7k | 27.23 | 0.829 | 0.204 | 7.7 GB | 6m05s |
+------------+-------+-------+-------+------------------+------------+
| gsplat-7k | 27.21 | 0.831 | 0.202 | **4.3GB** | **5m35s** |
+------------+-------+-------+-------+------------------+------------+
| inria-30k | 28.95 | 0.870 | 0.138 | 9.0 GB | 37m13s |
+------------+-------+-------+-------+------------------+------------+
| gsplat-30k | 28.95 | 0.870 | 0.135 | **5.7 GB** | **35m49s** |
+------------+-------+-------+-------+------------------+------------+
+---------------------+-------+-------+-------+------------------+------------+
| | PSNR | SSIM | LPIPS | Train Mem | Train Time |
+=====================+=======+=======+=======+==================+============+
| inria-7k | 27.23 | 0.829 | 0.204 | 7.7 GB | 6m05s |
+---------------------+-------+-------+-------+------------------+------------+
| gsplat-7k | 27.21 | 0.831 | 0.202 | **4.3GB** | **5m35s** |
+---------------------+-------+-------+-------+------------------+------------+
| inria-30k | 28.95 | 0.870 | 0.138 | 9.0 GB | 37m13s |
+---------------------+-------+-------+-------+------------------+------------+
| gsplat-30k (1 GPU) | 28.95 | 0.870 | 0.135 | **5.7 GB** | **35m49s** |
+---------------------+-------+-------+-------+------------------+------------+
| gsplat-30k (4 GPUs) | 28.91 | 0.871 | 0.135 | **2.0 GB** | **11m28s** |
+---------------------+-------+-------+-------+------------------+------------+

This repo comes with a standalone script (:code:`examples/simple_trainer.py`) that reproduces
the `Gaussian Splatting <https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/>`_ with
Expand Down Expand Up @@ -131,7 +133,7 @@ is different from what's reported in the original paper that uses
:code:`from lpipsPyTorch import lpips`.

The evaluation of `gsplat-X` can be reproduced with the command
:code:`cd examples; bash benchmark.sh`
:code:`cd examples; bash benchmarks/basic.sh`
within the gsplat repo (commit 6acdce4).

The evaluation of `inria-X` can be
Expand Down
18 changes: 17 additions & 1 deletion main/apis/rasterization.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion main/examples/colmap.html
Original file line number Diff line number Diff line change
Expand Up @@ -324,7 +324,7 @@ <h1>Fit a COLMAP Capture<a class="headerlink" href="#fit-a-colmap-capture" title
able to reproduce the metrics in the paper, with much better training speed and memory
footprint. See <a class="reference internal" href="../tests/eval.html"><span class="doc">Evaluation</span></a> for more details on the comparision.</p>
<p>Simply run the script under <cite>examples/</cite>:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>python<span class="w"> </span>simple_trainer.py<span class="w"> </span><span class="se">\</span>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="nv">CUDA_VISIBLE_DEVICES</span><span class="o">=</span><span class="m">0</span><span class="w"> </span>python<span class="w"> </span>simple_trainer.py<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--data_dir<span class="w"> </span>data/360_v2/garden/<span class="w"> </span>--data_factor<span class="w"> </span><span class="m">4</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--result_dir<span class="w"> </span>./results/garden
</pre></div>
Expand Down
2 changes: 1 addition & 1 deletion main/examples/large_scale.html
Original file line number Diff line number Diff line change
Expand Up @@ -333,7 +333,7 @@ <h1>Render a Large Scene<a class="headerlink" href="#render-a-large-scene" title
switch to low resolution if the rendering is slow.</p>
<p>The code for this example can be found under <cite>examples/</cite>:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span><span class="c1"># First train a 3DGS model</span>
python<span class="w"> </span>simple_trainer.py<span class="w"> </span><span class="se">\</span>
<span class="nv">CUDA_VISIBLE_DEVICES</span><span class="o">=</span><span class="m">0</span><span class="w"> </span>python<span class="w"> </span>simple_trainer.py<span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--data_dir<span class="w"> </span>data/360_v2/garden/<span class="w"> </span>--data_factor<span class="w"> </span><span class="m">4</span><span class="w"> </span><span class="se">\</span>
<span class="w"> </span>--result_dir<span class="w"> </span>./results/garden

Expand Down
16 changes: 12 additions & 4 deletions main/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -326,10 +326,18 @@ <h2>Overview<a class="headerlink" href="#overview" title="Link to this heading">
Real-Time Rendering of Radiance Fields” <span id="id1">[<a class="reference internal" href="#id3" title="Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics, July 2023. URL: https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/.">1</a>]</span>, but we’ve made <em>gsplat</em> even
faster, more memory efficient, and with a growing list of new features!</p>
<ul class="simple">
<li><p><em>gsplat</em> is developed with efficiency in mind. Comparing to the <a class="reference external" href="https://github.com/graphdeco-inria/gaussian-splatting">official implementation</a>, <em>gsplat</em> enables up to <strong>4x less training memory footprint</strong>, and up to <strong>15% less training time</strong> on Mip-NeRF 360 captures, and potential more on larger scenes. See <a class="reference internal" href="tests/eval.html"><span class="doc">Evaluation</span></a> for details.</p></li>
<li><p><em>gsplat</em> is designed to <strong>support extremely large scene rendering</strong>, which is magnitudes faster than the official CUDA backend <a class="reference external" href="https://github.com/graphdeco-inria/diff-gaussian-rasterization">diff-gaussian-rasterization</a>. See <a class="reference internal" href="examples/large_scale.html"><span class="doc">Render a Large Scene</span></a> for an example.</p></li>
<li><p><em>gsplat</em> offers many extra features, including <strong>batch rasterization</strong>, <strong>N-D feature rendering</strong>, <strong>depth rendering</strong>, <strong>sparse gradient</strong> etc. See <a class="reference internal" href="apis/rasterization.html"><span class="doc">Rasterization</span></a> for details.</p></li>
<li><p><em>gsplat</em> is equipped with the <strong>latest and greatest</strong> 3D Gaussian Splatting techniques, including <a class="reference external" href="https://ty424.github.io/AbsGS.github.io/">absgrad</a>, <a class="reference external" href="https://niujinshuchong.github.io/mip-splatting/">anti-aliasing</a> etc. And more to come!</p></li>
<li><p><em>gsplat</em> is developed with efficiency in mind. Comparing to the <a class="reference external" href="https://github.com/graphdeco-inria/gaussian-splatting">official implementation</a>,
<em>gsplat</em> enables up to <strong>4x less training memory footprint</strong>, and up to <strong>15% less training time</strong> on Mip-NeRF 360 captures, and potential more on larger scenes. See <a class="reference internal" href="tests/eval.html"><span class="doc">Evaluation</span></a> for details.</p></li>
<li><p><em>gsplat</em> is designed to <strong>support extremely large scene rendering</strong>, which is magnitudes
faster than the official CUDA backend <a class="reference external" href="https://github.com/graphdeco-inria/diff-gaussian-rasterization">diff-gaussian-rasterization</a>. See <a class="reference internal" href="examples/large_scale.html"><span class="doc">Render a Large Scene</span></a> for an example.</p></li>
<li><p><em>gsplat</em> offers many extra features, including <strong>batch rasterization</strong>,
<strong>N-D feature rendering</strong>, <strong>depth rendering</strong>, <strong>sparse gradient</strong>,
<strong>multi-GPU distributed rasterization</strong>
etc. See <a class="reference internal" href="apis/rasterization.html"><span class="doc">Rasterization</span></a> for details.</p></li>
<li><p><em>gsplat</em> is equipped with the <strong>latest and greatest</strong> 3D Gaussian Splatting techniques,
including <a class="reference external" href="https://ty424.github.io/AbsGS.github.io/">absgrad</a>,
<a class="reference external" href="https://niujinshuchong.github.io/mip-splatting/">anti-aliasing</a>,
<a class="reference external" href="https://ubc-vision.github.io/3dgs-mcmc/">3DGS-MCMC</a> etc. And more to come!</p></li>
</ul>
<div style="position:relative; padding-bottom:56.25%; height:0; width:100%">
<iframe style="position:absolute; top:0; left:0; width:100%; height:100%" src="https://www.youtube.com/embed/d5vOUYm5k34?si=fQBdwPgoi0FZOSyD" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
Expand Down
2 changes: 1 addition & 1 deletion main/searchindex.js

Large diffs are not rendered by default.

11 changes: 9 additions & 2 deletions main/tests/eval.html
Original file line number Diff line number Diff line change
Expand Up @@ -351,13 +351,20 @@ <h1>Evaluation<a class="headerlink" href="#evaluation" title="Link to this headi
<td><p>9.0 GB</p></td>
<td><p>37m13s</p></td>
</tr>
<tr class="row-odd"><td><p>gsplat-30k</p></td>
<tr class="row-odd"><td><p>gsplat-30k (1 GPU)</p></td>
<td><p>28.95</p></td>
<td><p>0.870</p></td>
<td><p>0.135</p></td>
<td><p><strong>5.7 GB</strong></p></td>
<td><p><strong>35m49s</strong></p></td>
</tr>
<tr class="row-even"><td><p>gsplat-30k (4 GPUs)</p></td>
<td><p>28.91</p></td>
<td><p>0.871</p></td>
<td><p>0.135</p></td>
<td><p><strong>2.0 GB</strong></p></td>
<td><p><strong>11m28s</strong></p></td>
</tr>
</tbody>
</table>
</div>
Expand Down Expand Up @@ -779,7 +786,7 @@ <h2>Reproduced Metrics<a class="headerlink" href="#reproduced-metrics" title="Li
is different from what’s reported in the original paper that uses
<code class="code docutils literal notranslate"><span class="pre">from</span> <span class="pre">lpipsPyTorch</span> <span class="pre">import</span> <span class="pre">lpips</span></code>.</p>
<p>The evaluation of <cite>gsplat-X</cite> can be reproduced with the command
<code class="code docutils literal notranslate"><span class="pre">cd</span> <span class="pre">examples;</span> <span class="pre">bash</span> <span class="pre">benchmark.sh</span></code>
<code class="code docutils literal notranslate"><span class="pre">cd</span> <span class="pre">examples;</span> <span class="pre">bash</span> <span class="pre">benchmarks/basic.sh</span></code>
within the gsplat repo (commit 6acdce4).</p>
<p>The evaluation of <cite>inria-X</cite> can be
reproduced with our forked wersion of the official implementation at
Expand Down

0 comments on commit 7be9161

Please sign in to comment.