Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enable core tests on main branch #17

Merged
merged 2 commits into from
Sep 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .github/workflows/core_tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,9 @@ name: Core Tests.

on:
push:
branches: [master]
branches: [main]
pull_request:
branches: [master]
branches: [main]

permissions:
contents: read
Expand Down
24 changes: 18 additions & 6 deletions diff_rast/_torch_impl.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,9 @@
from torch import Tensor


def compute_sh_color(viewdirs: Float[Tensor, "*batch 3"], sh_coeffs: Float[Tensor, "*batch D C"]):
def compute_sh_color(
viewdirs: Float[Tensor, "*batch 3"], sh_coeffs: Float[Tensor, "*batch D C"]
):
"""
:param viewdirs (*, C)
:param sh_coeffs (*, D, C) sh coefficients for each color channel
Expand Down Expand Up @@ -66,7 +68,9 @@ def eval_sh_bases(basis_dim: int, dirs: torch.Tensor):

:return: torch.Tensor (..., basis_dim)
"""
result = torch.empty((*dirs.shape[:-1], basis_dim), dtype=dirs.dtype, device=dirs.device)
result = torch.empty(
(*dirs.shape[:-1], basis_dim), dtype=dirs.dtype, device=dirs.device
)
result[..., 0] = SH_C0
if basis_dim > 1:
x, y, z = dirs.unbind(-1)
Expand Down Expand Up @@ -100,7 +104,9 @@ def eval_sh_bases(basis_dim: int, dirs: torch.Tensor):
result[..., 21] = SH_C4[5] * xz * (7 * zz - 3)
result[..., 22] = SH_C4[6] * (xx - yy) * (7 * zz - 1)
result[..., 23] = SH_C4[7] * xz * (xx - 3 * yy)
result[..., 24] = SH_C4[8] * (xx * (xx - 3 * yy) - yy * (3 * xx - yy))
result[..., 24] = SH_C4[8] * (
xx * (xx - 3 * yy) - yy * (3 * xx - yy)
)
return result


Expand Down Expand Up @@ -148,7 +154,9 @@ def scale_rot_to_cov3d(scale: Tensor, glob_scale: float, quat: Tensor) -> Tensor
return M @ M.transpose(-1, -2) # (..., 3, 3)


def project_cov3d_ewa(mean3d: Tensor, cov3d: Tensor, viewmat: Tensor, fx: float, fy: float) -> Tensor:
def project_cov3d_ewa(
mean3d: Tensor, cov3d: Tensor, viewmat: Tensor, fx: float, fy: float
) -> Tensor:
assert mean3d.shape[-1] == 3, mean3d.shape
assert cov3d.shape[-2:] == (3, 3), cov3d.shape
assert viewmat.shape[-2:] == (4, 4), viewmat.shape
Expand Down Expand Up @@ -212,7 +220,9 @@ def clip_near_plane(p, viewmat, thresh=0.1):


def get_tile_bbox(pix_center, pix_radius, tile_bounds, BLOCK_X=16, BLOCK_Y=16):
tile_size = torch.tensor([BLOCK_X, BLOCK_Y], dtype=torch.float32, device=pix_center.device)
tile_size = torch.tensor(
[BLOCK_X, BLOCK_Y], dtype=torch.float32, device=pix_center.device
)
tile_center = pix_center / tile_size
tile_radius = pix_radius[..., None] / tile_size

Expand Down Expand Up @@ -253,7 +263,9 @@ def project_gaussians_forward(
conic, radius, det_valid = compute_cov2d_bounds(cov2d)
center = project_pix(projmat, means3d, img_size)
tile_min, tile_max = get_tile_bbox(center, radius, tile_bounds)
tile_area = (tile_max[..., 0] - tile_min[..., 0]) * (tile_max[..., 1] - tile_min[..., 1])
tile_area = (tile_max[..., 0] - tile_min[..., 0]) * (
tile_max[..., 1] - tile_min[..., 1]
)
mask = (tile_area > 0) & (~is_close) & det_valid

num_tiles_hit = tile_area
Expand Down
4 changes: 3 additions & 1 deletion diff_rast/cov2d_bounds.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,9 @@ def forward(
), f"Expected input cov2d to be of shape (*batch, 3) (upper triangular values), but got {tuple(cov2d.shape)}"
num_pts = cov2d.shape[0]
assert num_pts > 0
conic, radius = _C.compute_cov2d_bounds_forward(num_pts, cov2d.contiguous().cuda())
conic, radius = _C.compute_cov2d_bounds_forward(
num_pts, cov2d.contiguous().cuda()
)
return (conic, radius)

@staticmethod
Expand Down
10 changes: 2 additions & 8 deletions diff_rast/project_gaussians.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ def forward(
img_height: int,
img_width: int,
tile_bounds: Tuple[int, int, int],
clip_thresh:float=0.01
clip_thresh: float = 0.01,
):
num_points = means3d.shape[-2]

Expand Down Expand Up @@ -102,13 +102,7 @@ def backward(ctx, v_xys, v_depths, v_radii, v_conics, v_num_tiles_hit, v_cov3d):
conics,
) = ctx.saved_tensors

(
v_cov2d,
v_cov3d,
v_mean3d,
v_scale,
v_quat,
) = _C.project_gaussians_backward(
(v_cov2d, v_cov3d, v_mean3d, v_scale, v_quat,) = _C.project_gaussians_backward(
ctx.num_points,
means3d,
scales,
Expand Down
11 changes: 9 additions & 2 deletions tests/test_cov2d_bounds.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,9 +14,16 @@ def compare_binding_to_pytorch():

num_cov2ds = 2

_covs2d = torch.rand((num_cov2ds, 2, 2), dtype=torch.float32, device=device, requires_grad=True)
_covs2d = torch.rand(
(num_cov2ds, 2, 2), dtype=torch.float32, device=device, requires_grad=True
)
covs2d = torch.stack(
[torch.triu(_covs2d)[:, 0, 0], torch.triu(_covs2d)[:, 0, 1], torch.triu(_covs2d)[:, 1, 1]], dim=-1
[
torch.triu(_covs2d)[:, 0, 0],
torch.triu(_covs2d)[:, 0, 1],
torch.triu(_covs2d)[:, 1, 1],
],
dim=-1,
)

conic, radii = compute_cov2d_bounds.apply(covs2d)
Expand Down