Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

STY: Format jupyter notebooks #1321

Merged
merged 1 commit into from
Aug 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
73 changes: 51 additions & 22 deletions docs/notebooks/MRIQC Web API.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -21,12 +21,13 @@
"source": [
"import pandas as pd\n",
"from json import load\n",
"import urllib.request, json \n",
"import urllib.request, json\n",
"from pandas.io.json import json_normalize\n",
"import seaborn as sns\n",
"import pylab as plt\n",
"import multiprocessing as mp\n",
"import numpy as np\n",
"\n",
"%matplotlib inline"
]
},
Expand All @@ -52,23 +53,22 @@
" url_root = 'https://mriqc.nimh.nih.gov/api/v1/{modality}?{query}'\n",
" page = 1\n",
" dfs = []\n",
" \n",
"\n",
" if versions is None:\n",
" versions = ['*']\n",
"\n",
" for version in versions:\n",
" while True:\n",
" query = []\n",
" \n",
"\n",
" if software is not None:\n",
" query.append('\"provenance.software\":\"%s\"' % software)\n",
" \n",
"\n",
" if version != '*':\n",
" query.append('\"provenance.version\":\"%s\"' % version)\n",
" \n",
"\n",
" page_url = url_root.format(\n",
" modality=modality,\n",
" query='where={%s}&page=%d' % (','.join(query), page)\n",
" modality=modality, query='where={%s}&page=%d' % (','.join(query), page)\n",
" )\n",
" with urllib.request.urlopen(page_url) as url:\n",
" data = json.loads(url.read().decode())\n",
Expand All @@ -87,13 +87,13 @@
" Distribution plot of a given measure\n",
" \"\"\"\n",
" sns.distplot(data, ax=ax, label=label)\n",
" \n",
"\n",
" if xlabel is not None:\n",
" ax.set_xlabel(xlabel)\n",
" \n",
"\n",
" if min is None:\n",
" min = np.percentile(data, 0.5)\n",
" \n",
"\n",
" if max is None:\n",
" max = np.percentile(data, 99.5)\n",
" ax.set_xlim((min, max))"
Expand Down Expand Up @@ -165,7 +165,7 @@
"ax.set_title('Number of T1w records in database')\n",
"ax.legend()\n",
"\n",
"plt.savefig(\"fig03a-0.svg\", bbox_inches='tight', transparent=False, pad_inches=0)"
"plt.savefig('fig03a-0.svg', bbox_inches='tight', transparent=False, pad_inches=0)"
]
},
{
Expand Down Expand Up @@ -195,7 +195,7 @@
"ax.plot(dates_bold_u, list(range(1, len(dates_bold_u) + 1)), label='unique')\n",
"ax.set_title('Number of BOLD records in database')\n",
"ax.legend()\n",
"plt.savefig(\"fig03a-1.svg\", bbox_inches='tight', transparent=False, pad_inches=0)"
"plt.savefig('fig03a-1.svg', bbox_inches='tight', transparent=False, pad_inches=0)"
]
},
{
Expand All @@ -221,8 +221,17 @@
}
],
"source": [
"print(','.join([l for l in df_t1w.columns \n",
" if not l.startswith('_') and not l.startswith('bids_meta') and not l.startswith('provenance')]))"
"print(\n",
" ','.join(\n",
" [\n",
" l\n",
" for l in df_t1w.columns\n",
" if not l.startswith('_')\n",
" and not l.startswith('bids_meta')\n",
" and not l.startswith('provenance')\n",
" ]\n",
" )\n",
")"
]
},
{
Expand All @@ -242,14 +251,18 @@
}
],
"source": [
"f, ax = plt.subplots(1, 5, figsize=(25,5))\n",
"f, ax = plt.subplots(1, 5, figsize=(25, 5))\n",
"plot_measure(df_t1w_unique.cjv, xlabel='Coefficient of joint variation (CJV)', ax=ax[0])\n",
"plot_measure(df_t1w_unique.cnr, xlabel='Contrast-to-noise ratio (CNR)', ax=ax[1])\n",
"plot_measure(df_t1w_unique.snr_wm, xlabel='Signal-to-noise ratio estimated on the white-matter (SNR)', ax=ax[2])\n",
"plot_measure(\n",
" df_t1w_unique.snr_wm,\n",
" xlabel='Signal-to-noise ratio estimated on the white-matter (SNR)',\n",
" ax=ax[2],\n",
")\n",
"plot_measure(df_t1w_unique.fwhm_avg, xlabel='Smoothness (FWHM)', ax=ax[3])\n",
"plot_measure(df_t1w_unique.wm2max, xlabel='WM-to-max intensity ratio (WM2MAX)', ax=ax[4])\n",
"plt.suptitle('Distributions of some IQMs extracted from T1-weighted MRI')\n",
"plt.savefig(\"fig03b-0.svg\", bbox_inches='tight', transparent=False, pad_inches=0)"
"plt.savefig('fig03b-0.svg', bbox_inches='tight', transparent=False, pad_inches=0)"
]
},
{
Expand All @@ -275,8 +288,17 @@
}
],
"source": [
"print(','.join([l for l in df_bold.columns \n",
" if not l.startswith('_') and not l.startswith('bids_meta') and not l.startswith('provenance')]))"
"print(\n",
" ','.join(\n",
" [\n",
" l\n",
" for l in df_bold.columns\n",
" if not l.startswith('_')\n",
" and not l.startswith('bids_meta')\n",
" and not l.startswith('provenance')\n",
" ]\n",
" )\n",
")"
]
},
{
Expand All @@ -296,16 +318,23 @@
}
],
"source": [
"f, ax = plt.subplots(1, 5, figsize=(25,5))\n",
"plot_measure(df_bold_unique[df_bold_unique.fd_mean < 10].fd_mean, xlabel='Framewise Displacement (mm)', max=2, ax=ax[0])\n",
"f, ax = plt.subplots(1, 5, figsize=(25, 5))\n",
"plot_measure(\n",
" df_bold_unique[df_bold_unique.fd_mean < 10].fd_mean,\n",
" xlabel='Framewise Displacement (mm)',\n",
" max=2,\n",
" ax=ax[0],\n",
")\n",
"plot_measure(df_bold_unique[df_bold_unique.dvars_nstd < 100].dvars_nstd, xlabel='DVARS', ax=ax[1])\n",
"plot_measure(df_bold_unique.gcor, xlabel='Global correlation', ax=ax[2])\n",
"plot_measure(df_bold_unique.gsr_x, label='x-axis', ax=ax[3])\n",
"plot_measure(df_bold_unique.gsr_y, xlabel='Ghost-to-signal ratio (GSR)', label='y-axis', ax=ax[3])\n",
"ax[3].legend()\n",
"plot_measure(df_bold_unique.tsnr, xlabel='Temporal SNR (tSNR)', ax=ax[4])\n",
"plt.suptitle('Distributions of some IQMs extracted from BOLD fMRI')\n",
"plt.savefig(\"fig03b-1.png\", bbox_inches='tight', transparent=False, pad_inches=0, facecolor='white')"
"plt.savefig(\n",
" 'fig03b-1.png', bbox_inches='tight', transparent=False, pad_inches=0, facecolor='white'\n",
")"
]
}
],
Expand Down
Loading
Loading