Skip to content
/ optht Public
forked from erichson/optht

Optimal Hard Threshold for Matrix Denoising

Notifications You must be signed in to change notification settings

nish-ant/optht

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

Optimal Hard Threshold for Matrix Denoising


Off-the-shelf method for determining the optimal singular value truncation (hard threshold) for matrix denoising.

The method gives the optimal location both in the case of the konwn or unknown noise level.

Example


example example2

Reproduce the example


Create some data:

import numpy as np
import scipy as sci
import matplotlib.pyplot as plt 

t = np.arange(-2,2, 0.01)

Utrue = np.array(( [np.cos(17*t) * np.exp(-t**2) , np.sin(11*t)] )).T
Strue = np.array(( [2, 0], [0, .5] ))
Vtrue = np.array(( [np.sin(5*t) * np.exp(-t**2) , np.cos(13*t)] )).T

# construct image
X = Utrue.dot(Strue).dot(Vtrue.T)

# define the noise level and add
sigma = 0.5
X_noisy = X + sigma * np.random.standard_normal(X.shape)

Compute the singular value decompositionn (SVD):

U,s,Vh = np.linalg.svd(X_noisy, full_matrices=False)

Determine optimal hard threshold and reconstruct image

k = optht(X_noisy, sv=s, sigma=None)
X_denoised = (U[:, xrange(k)] * s[xrange(k)] ).dot( Vh[xrange(k),:])

Plot the results:

plt.subplot(131)
plt.imshow(X, cmap = 'gray', interpolation = 'bicubic')
plt.title('Original image', fontsize=30)
plt.axis('off')

plt.subplot(132)
plt.imshow(X_noisy, cmap = 'gray', interpolation = 'bicubic')
plt.title('Noisy image, sigma=%s'%sigma, fontsize=30)
plt.axis('off')

plt.subplot(133)
plt.imshow(X_denoised, cmap = 'gray', interpolation = 'bicubic')
rmseSVD = np.sqrt(np.sum( ( X - X_denoised )**2 ) /  np.sum(X**2))
plt.title('Denoised image,  nrmse=%s '%np.round(rmseSVD,2), fontsize=30)
plt.axis('off')

Plot the singular value spectrum:

plt.plot( (np.arange(1,s.shape[0]+1)), np.log(s), c='b', marker='o', linestyle='--')
plt.xlabel('k', fontsize=25)
plt.ylabel('Log-scaled singular values', fontsize=25)
plt.tick_params(axis='x', labelsize=25) 
plt.tick_params(axis='y', labelsize=25) 
plt.title('Singular value spectrum', fontsize=30)
plt.axvline(k, c='r', linewidth=2, linestyle='--')

Notes


Code is adapted from Matan Gavish and David Donoho, see [1].

References


[1] Gavish, Matan, and David L. Donoho. "The optimal hard threshold for singular values is 4/sqrt(3)" IEEE Transactions on Information Theory 60.8 (2014): 5040-5053.
http://arxiv.org/abs/1305.5870

About

Optimal Hard Threshold for Matrix Denoising

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%