Skip to content

Simple python API to read annotation data of Manga109

License

Notifications You must be signed in to change notification settings

nkmr-lab/manga109api

 
 

Repository files navigation

Manga109 API

PyPI version Downloads

Simple python API to read annotation data of Manga109.

Manga109 is the largest dataset for manga (Japanese comic) images, that is made publicly available for academic research purposes with proper copyright notation.

To download images/annotations of Manga109, please visit here and send an application via the form. After that, you will receive the password for downloading images (109 titles of manga as jpeg files) and annotations (bounding box coordinates of face, body, frame, and speech balloon with texts, in the form of XML).

This package provides a simple Python API to read annotation data (i.e., parsing XML) with some utility functions such as reading an image.

News

Links

Installing

You can install the package via pip. The library works with Python 3.5+ on linux/MacOS

pip install manga109api

Example

import manga109api
from pprint import pprint

# Instantiate a parser with the root directory of Manga109
manga109_root_dir = "YOUR_DIR/Manga109_2017_09_28"
p = manga109api.Parser(root_dir=manga109_root_dir)


# (1) Book titles 
print(p.books)
# Output: ['ARMS', 'AisazuNihaIrarenai', 'AkkeraKanjinchou', 'Akuhamu', ...


# (2) Path to an image (page).
print(p.img_path(book="ARMS", index=3))  # the 4th page of "ARMS"
# Output (str): YOUR_DIR/Manga109_2017_09_28/images/ARMS/003.jpg


# (3) The main annotation data
annotation = p.get_annotation(book="ARMS")

# annotation is a dictionary. Keys are "title", "character", and "page":
# - annotation["title"] : (str) Title
# - annotation["character"] : (list) Characters who appear in the book
# - annotation["page"] : (list) The main annotation data for each page

# (3-a) title
print(annotation["title"])  # Output (str): ARMS

# (3-b) character
pprint(annotation["character"])
# Output (list):
# [{'@id': '00000003', '@name': '女1'},
#  {'@id': '00000010', '@name': '男1'},
#  {'@id': '00000090', '@name': 'ロボット1'},
#  {'@id': '000000fe', '@name': 'エリー'},
#  {'@id': '0000010a', '@name': 'ケイト'}, ... ]

# (3-c) page
# annotation["page"] is the main annotation data (list of pages)
pprint(annotation["page"][3])  # the data of the 4th page of "ARMS"
# Output (dict):
# {'@height': 1170,    <- Height of the img
#  '@index': 3,        <- The page number
#  '@width': 1654,     <- Width of the img
#  'body': [{'@character': '00000003',     <- Character body annotations
#            '@id': '00000006',
#            '@xmax': 1352,
#            '@xmin': 1229,
#            '@ymax': 875,
#            '@ymin': 709},
#           {'@character': '00000003',   <- character ID
#            '@id': '00000008',          <- annotation ID (unique)
#            '@xmax': 1172,
#            '@xmin': 959,
#            '@ymax': 1089,
#            '@ymin': 820}, ... ],
#  'face': [{'@character': '00000003',     <- Character face annotations
#            '@id': '0000000a',
#            '@xmax': 1072,
#            '@xmin': 989,
#            '@ymax': 941,
#            '@ymin': 890},
#           {'@character': '00000003',
#            '@id': '0000000d',
#            '@xmax': 453,
#            '@xmin': 341,
#            '@ymax': 700,
#            '@ymin': 615}, ... ],
#  'frame': [{'@id': '00000009',        <- Frame annotations
#             '@xmax': 1170,
#             '@xmin': 899,
#             '@ymax': 1085,
#             '@ymin': 585},
#            {'@id': '0000000c',
#             '@xmax': 826,
#             '@xmin': 2,
#             '@ymax': 513,
#             '@ymin': 0}, ... ],
#  'text': [{'#text': 'キャーッ',     <- Speech annotations
#            '@id': '00000005',
#            '@xmax': 685,
#            '@xmin': 601,
#            '@ymax': 402,
#            '@ymin': 291},
#           {'#text': 'はやく逃げないとまきぞえくっちゃう',   <- Text data
#            '@id': '00000007',
#            '@xmax': 1239,
#            '@xmin': 1155,
#            '@ymax': 686,
#            '@ymin': 595} ... ]}

Demo of visualization

import manga109api
from PIL import Image, ImageDraw

def draw_rectangle(img, x0, y0, x1, y1, annotation_type):
    assert annotation_type in ["body", "face", "frame", "text"]
    color = {"body": "#258039", "face": "#f5be41",
             "frame": "#31a9b8", "text": "#cf3721"}[annotation_type]
    draw = ImageDraw.Draw(img)
    draw.rectangle([x0, y0, x1, y1], outline=color, width=10)

if __name__ == "__main__":
    manga109_root_dir = "YOUR_DIR/Manga109_2017_09_28"
    book = "ARMS"
    page_index = 6

    p = manga109api.Parser(root_dir=manga109_root_dir)
    annotation = p.get_annotation(book=book)
    img = Image.open(p.img_path(book=book, index=page_index))

    for annotation_type in ["body", "face", "frame", "text"]:
        rois = annotation["page"][page_index][annotation_type]
        for roi in rois:
            draw_rectangle(img, roi["@xmin"], roi["@ymin"], roi["@xmax"], roi["@ymax"], annotation_type)

    img.save("out.jpg")

ARMS, (c) Kato Masaki

Maintainers

Citation

When you make use of images in Manga109, please cite the following paper:

@article{mtap_matsui_2017,
    author={Yusuke Matsui and Kota Ito and Yuji Aramaki and Azuma Fujimoto and Toru Ogawa and Toshihiko Yamasaki and Kiyoharu Aizawa},
    title={Sketch-based Manga Retrieval using Manga109 Dataset},
    journal={Multimedia Tools and Applications},
    volume={76},
    number={20},
    pages={21811--21838},
    year={2017}
}

When you use annotation data of Manga109, please cite this:

@article{multimedia_aizawa_2020,
    author={Kiyoharu Aizawa and Azuma Fujimoto and Atsushi Otsubo and Toru Ogawa and Yusuke Matsui and Koki Tsubota and Hikaru Ikuta},
    title={Building a Manga Dataset "Manga109" with Annotations for Multimedia Applications},
    journal={IEEE MultiMedia},
    doi={10.1109/mmul.2020.2987895},
    year={2020}
}

About

Simple python API to read annotation data of Manga109

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.9%
  • Makefile 4.1%