Skip to content

Reimplementation (currently partial) of PRECOG paper, ICCV '19

License

Notifications You must be signed in to change notification settings

nrhinehart/precog

Repository files navigation

License: CC BY-NC-ND 4.0

Purposes

  1. Serve as a partial reimplementation of the ESP multi-agent forecasting model
  2. Train a Deep Imitative Model for CARLA autonomous driving task. See https://github.com/nrhine1/deep_imitative_models.

Paper: http://openaccess.thecvf.com/content_ICCV_2019/papers/Rhinehart_PRECOG_PREdiction_Conditioned_on_Goals_in_Visual_Multi-Agent_Settings_ICCV_2019_paper.pdf

Primary files

precog/esp_train.py Interface to train a model precog/esp_infer.py Interface to perform test-time inference (plotting and metrics computation)

Setup

export PRECOGCONDAENV=pre3
conda create -n $PRECOGCONDAENV python=3.6.6
conda activate $PRECOGCONDAENV
source precog_env.sh
pip install -r requirements.txt

Potentially install the nrhine1/deep_imitative_models repo.

Training ESP on a toy context-free single-agent dataset.

export CUDA_VISIBLE_DEVICES=0; python $PRECOGROOT/precog/esp_train.py \
bijection=social_convrnn \
dataset=trimodal_dataset \
bijection.params.A=1 \
dataset.params.B=20 \
main.eager=false

Training ESP on data collected with carla_agent.py with the deep_imitative_models repo

export CUDA_VISIBLE_DEVICES=0; python $PRECOGROOT/precog/esp_train.py \
dataset=carla_town01_A1_T20_v2 \
main.eager=False \
bijection.params.A=1 \
optimizer.params.plot_before_train=True \
optimizer.params.save_before_train=True

Preparing NuScenes data.

Download the nuscenes dataset, then use the script preprocess_nuscenes.py

Tips

Recall that the log-likelihood is insensitive to sample quality. If you're not using a sample-penalizing metric, it will take longer training time to observe higher-quality samples.

Citation

@InProceedings{Rhinehart_2019_ICCV,
author = {Rhinehart, Nicholas and McAllister, Rowan and Kitani, Kris and Levine, Sergey},
title = {PRECOG: PREdiction Conditioned on Goals in Visual Multi-Agent Settings},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}

About

Reimplementation (currently partial) of PRECOG paper, ICCV '19

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published