Skip to content

Releases: ntucllab/striatum

0.2.5

11 Nov 09:59
Compare
Choose a tag to compare

Fix

  • fix rewardplot (#123)

0.2.4

11 Nov 09:34
Compare
Choose a tag to compare

Change

  • move reward from History to Recommendation (#121)

0.2.3

08 Nov 09:08
Compare
Choose a tag to compare

New

  • BaseBandit support update_action and remove_action methods (#120)

Change

  • recommendation class (#117)

Fix

  • fix and unify the return value of BaseBandit.get_action() when the action storage is empty (#118)

0.2.2

01 Nov 06:57
Compare
Choose a tag to compare

Fix

  • unify the data usage in all simulations, fixed #95 (#107)
  • multi-action history, fixed #58 (#110)
  • fix rewardplot.calculate_cum_reward (#112)
  • remove query_vector in the Exp3 model and use the history instead, fixed #108 (#112)

Change

  • History and HistoryStorage interfaces are changed (#110)

0.2.1

21 Oct 08:19
Compare
Choose a tag to compare

Fix

  • fix striatum.utils import error (#105)

0.2.0

21 Oct 07:26
Compare
Choose a tag to compare

Change

  • ActionStorage (#99)
  • reorder bandit __init__ parameters and change some default values (#102)
  • default n_actions in BaseBandit.get_action is chaged to None (#103)
  • BaseBandit.get_action add support for n_actions=None and n_actions=-1 (#103)

Fix

  • remove the generators in Exp3 and UCB1 (#101)

0.1.1

11 Oct 09:47
Compare
Choose a tag to compare

Fix

  • fix exp3 random_state; fixed #86 (#91)
  • correct setup configuration; fixed #87 (#88)

0.1.0

14 Sep 07:16
Compare
Choose a tag to compare

New

  • add reward calculation and plot methods in each bandit policy (#38)
  • add trivis ci using tox (#44)
  • Python3 support (#44)
  • generating documentation using sphinx and host it on readthedoc (#44)
  • BaseBandit.get_action_with_id (#63)

Change

  • refactor bandit algorithms to allow multiple actions and rewards (#37)
  • use Action object instead of action_id during policy initialization (#37)
  • use "expert advice probability vectors" instead of "scikit-learn models" as input for Exp4p (#37)
  • better simulation coding style (#47, #51, #53, #56, #72, #73, #74, #75, #76, #78)
  • better coding style (#50, #62, #66, #79)

Fix

  • fix the parameter updating bugs (query_vector calculation) in Exp4p (#37)
  • fix bugs in Exp4.P (#66)
  • remove generator in LinUCB (#54)
  • remove generator in Exp4.P (#67)
  • remove generator in LinTompSamp (#80)

0.0.1

01 Aug 10:14
Compare
Choose a tag to compare

New

  • implement LinUCB ( #10 )
  • implement UCB1 ( #10 )
  • implement EXP3 ( #10 )
  • implement EXP4P ( #10 )
  • implement Thompson Sampling for Contextual Bandits with Linear Payoffs ( #10 )
  • provide unit test for each bandit algorithm ( #10 )
  • simulation on fake data ( #10 )
  • benchmark using movielens ( #29 )