This package contains the ObjectBox integrations for LangChain. This page will show you how to use the ObjectBox vector store in your LangChain projects.
Install the langchain-objectbox
package from PyPI via pip.
pip install langchain-objectbox
In Python import the ObjectBox vector store which is available under fully qualified class
path langchain_objectbox.vectorstores.ObjectBox
, e.g.:
from langchain_objectbox.vectorstores import ObjectBox
Create an ObjectBox VectorStore using e.g. one of the from_
class methods e.g. from_texts
class method.
NOTE: Ensure to set argument embedding_dimensions
along with the dimensions used in your embeddings model.
obx_vectorstore = ObjectBox.from_texts(texts, embeddings, embedding_dimensions=768)
Note: we have also fully runnable examples in the examples
directory.
This small example demonstrates how to create an ObjectBox vector store with a list of texts and then perform a
similarity search.
Note that the DeterministicFakeEmbedding
is a not a real embedding model and thus does not match semantically.
from langchain_core.embeddings.fake import DeterministicFakeEmbedding
from langchain_objectbox.vectorstores import ObjectBox
texts = ["foo", "bar", "baz"]
obx_vectorstore = ObjectBox.from_texts(
texts,
DeterministicFakeEmbedding(size=10),
embedding_dimensions=10,
)
result = obx_vectorstore.similarity_search("foo", k=1)
print(result)
Prerequisites:
- Ollama as local LLM: See installation notes on https://python.langchain.com/docs/get_started/quickstart
pip install langchain bs4
from langchain_objectbox.vectorstores import ObjectBox
from langchain_community.llms import Ollama
llm = Ollama(model="llama2")
from langchain_community.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://docs.smith.langchain.com/user_guide")
docs = loader.load()
from langchain_community.embeddings import OllamaEmbeddings
embeddings = OllamaEmbeddings()
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts.chat import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template("""Answer the following question based only on the provided context:
<context>
{context}
</context>
Question: {input}""")
from langchain_text_splitters import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter()
documents = text_splitter.split_documents(docs)
vector = ObjectBox.from_documents(documents, embeddings, embedding_dimensions=768)
document_chain = create_stuff_documents_chain(llm, prompt)
from langchain_core.documents import Document
from langchain.chains import create_retrieval_chain
retriever = vector.as_retriever()
retrieval_chain = create_retrieval_chain(retriever, document_chain)
response = retrieval_chain.invoke({"input": "how can langsmith help with testing?"})
print(response["answer"])
If you are interested in developing the langchain-objectbox
package itself (just "just" using it),
you can check the "developer-notes.md" page.
MIT License
Copyright (c) 2024 ObjectBox, Ltd.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.