-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 808bbb2
Showing
10 changed files
with
651 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
# If you prefer the allow list template instead of the deny list, see community template: | ||
# https://github.com/github/gitignore/blob/main/community/Golang/Go.AllowList.gitignore | ||
# | ||
# Binaries for programs and plugins | ||
*.exe | ||
*.exe~ | ||
*.dll | ||
*.so | ||
*.dylib | ||
|
||
# Test binary, built with `go test -c` | ||
*.test | ||
|
||
# Output of the go coverage tool, specifically when used with LiteIDE | ||
*.out | ||
|
||
# Dependency directories (remove the comment below to include it) | ||
# vendor/ | ||
|
||
# Go workspace file | ||
go.work | ||
go.work.sum | ||
|
||
# env file | ||
.env | ||
.idea | ||
.vscode |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
# augment | ||
gocv数据增强,生成新的图片并返回labelId和新图片的rect |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,361 @@ | ||
package augment | ||
|
||
import ( | ||
"gocv.io/x/gocv" | ||
"image" | ||
"image/color" | ||
"math" | ||
"math/rand" | ||
"time" | ||
) | ||
|
||
// 加噪音 高斯模糊 | ||
func (a *DataAugment) addNoise(img gocv.Mat) gocv.Mat { | ||
defer img.Close() | ||
result := gocv.NewMat() | ||
gocv.GaussianBlur(img, &result, image.Pt(11, 11), 0, 0, gocv.BorderDefault) | ||
return result | ||
} | ||
|
||
// 调整亮度 | ||
func (a *DataAugment) changeLight(img gocv.Mat) gocv.Mat { | ||
defer img.Close() | ||
// 生成一个在 [0.35, 1] 范围内的随机浮点数 | ||
alpha := randomUniformFloat64(0.35, 1) | ||
blank := gocv.NewMatWithSize(img.Rows(), img.Cols(), img.Type()) | ||
defer blank.Close() // Ensure blank image is released | ||
result := gocv.NewMat() | ||
gocv.AddWeighted(img, alpha, blank, 1-alpha, 0, &result) | ||
return result | ||
} | ||
|
||
// 抠图 | ||
func (a *DataAugment) cutout(img gocv.Mat, cells []Cell, length int, nHoles int, threshold float64) gocv.Mat { | ||
defer img.Close() | ||
if length == 0 { | ||
length = 100 | ||
} | ||
if nHoles == 0 { | ||
nHoles = 1 | ||
} | ||
if threshold == 0 { | ||
threshold = 0.5 | ||
} | ||
h := img.Rows() | ||
w := img.Cols() | ||
|
||
// 初始化遮罩 | ||
mask := gocv.NewMatWithSize(h, w, gocv.MatTypeCV8UC3) | ||
defer mask.Close() | ||
mask.SetTo(gocv.NewScalar(255, 255, 255, 0)) // white mask | ||
|
||
rand.NewSource(time.Now().UnixNano()) | ||
|
||
for n := 0; n < nHoles; n++ { | ||
overlap := true // 看切割的区域是否与box重叠太多 | ||
var ( | ||
x1, x2, y1, y2 int | ||
) | ||
for overlap { | ||
y := rand.Intn(h) | ||
x := rand.Intn(w) | ||
|
||
// 定义要遮罩的区域 | ||
y1 = max(0, y-length/2) | ||
y2 = min(h, y+length/2) | ||
x1 = max(0, x-length/2) | ||
x2 = min(w, x+length/2) | ||
|
||
overlap = false | ||
|
||
maskRect := image.Rect(x1, y1, x2, y2) | ||
for _, cell := range cells { | ||
if iou(maskRect, cell.Rectangle) > threshold { | ||
overlap = true | ||
break | ||
} | ||
} | ||
} | ||
|
||
// 蒙版 黑色矩形 遮挡区域 | ||
gocv.Rectangle(&mask, image.Rect(x1, y1, x2, y2), color.RGBA{}, -1) | ||
} | ||
|
||
// 应用蒙版到图像 | ||
result := gocv.NewMat() | ||
gocv.BitwiseAnd(img, mask, &result) | ||
return result | ||
} | ||
|
||
// 旋转 | ||
func (a *DataAugment) rotateImageBBbox(img gocv.Mat, cells []Cell, angle int, scale float64) (gocv.Mat, []Cell) { | ||
defer img.Close() | ||
if angle == 0 { | ||
angle = 5 | ||
} | ||
if scale == 0 { | ||
scale = 1.0 | ||
} | ||
h := img.Rows() | ||
w := img.Cols() | ||
// 旋转角度 | ||
rangle := float64(angle) * math.Pi / 180.0 | ||
|
||
// 计算新图像的宽度和高度 | ||
nw := int(math.Abs(math.Sin(rangle)*float64(h)) + math.Abs(math.Cos(rangle)*float64(w))*scale) | ||
nh := int(math.Abs(math.Cos(rangle)*float64(h)) + math.Abs(math.Sin(rangle)*float64(w))*scale) | ||
|
||
// 旋转矩阵 | ||
rotMat := gocv.GetRotationMatrix2D(image.Point{X: nw / 2, Y: nh / 2}, float64(angle), scale) | ||
defer rotMat.Close() | ||
|
||
// 结合旋转计算从旧中心到新中心的移动 | ||
rotMove := []float64{float64(nw-w) * 0.5, float64(nh-h) * 0.5} | ||
|
||
// 更新旋转矩阵的平移部分 | ||
rotMat.SetDoubleAt(0, 2, rotMat.GetDoubleAt(0, 2)+rotMove[0]) | ||
rotMat.SetDoubleAt(1, 2, rotMat.GetDoubleAt(1, 2)+rotMove[1]) | ||
|
||
// 应用仿射扭曲来旋转图像 | ||
rotatedImg := gocv.NewMat() | ||
gocv.WarpAffine(img, &rotatedImg, rotMat, image.Point{X: nw, Y: nh}) | ||
|
||
// 调整边界框 | ||
rotBBoxes := make([]Cell, 0, len(cells)) | ||
for _, cell := range cells { | ||
xmin, ymin, xmax, ymax := cell.Rectangle.Min.X, cell.Rectangle.Min.Y, cell.Rectangle.Max.X, cell.Rectangle.Max.Y | ||
|
||
// 计算边界框的四个角 | ||
points := []gocv.Point2f{ | ||
{X: float32((xmin + xmax) / 2), Y: float32(ymin)}, | ||
{X: float32(xmax), Y: float32((ymin + ymax) / 2)}, | ||
{X: float32((xmin + xmax) / 2), Y: float32(ymax)}, | ||
{X: float32(xmin), Y: float32((ymin + ymax) / 2)}, | ||
} | ||
|
||
// 将旋转矩阵应用于四个点 | ||
rotatedPoints := make([]gocv.Point2f, 4) | ||
for i, pt := range points { | ||
x := float64(pt.X) | ||
y := float64(pt.Y) | ||
newX := rotMat.GetDoubleAt(0, 0)*x + rotMat.GetDoubleAt(0, 1)*y + rotMat.GetDoubleAt(0, 2) | ||
newY := rotMat.GetDoubleAt(1, 0)*x + rotMat.GetDoubleAt(1, 1)*y + rotMat.GetDoubleAt(1, 2) | ||
rotatedPoints[i] = gocv.Point2f{X: float32(newX), Y: float32(newY)} | ||
} | ||
|
||
// 从旋转点获取新的边界框 | ||
rxMin, ryMin := int(rotatedPoints[0].X), int(rotatedPoints[0].Y) | ||
rxMax, ryMax := rxMin, ryMin | ||
for _, pt := range rotatedPoints { | ||
rxMin = int(math.Min(float64(rxMin), float64(pt.X))) | ||
ryMin = int(math.Min(float64(ryMin), float64(pt.Y))) | ||
rxMax = int(math.Max(float64(rxMax), float64(pt.X))) | ||
ryMax = int(math.Max(float64(ryMax), float64(pt.Y))) | ||
} | ||
|
||
// 将新的边界框附加到列表中 | ||
rotBBoxes = append(rotBBoxes, Cell{LabelId: cell.LabelId, Rectangle: image.Rect(rxMin, ryMin, rxMax, ryMax)}) | ||
} | ||
|
||
return rotatedImg, rotBBoxes | ||
} | ||
|
||
// 裁剪 | ||
func (a *DataAugment) cropImgAndBBoxes(img gocv.Mat, cells []Cell) (gocv.Mat, []Cell) { | ||
defer img.Close() | ||
h := img.Rows() | ||
w := img.Cols() | ||
|
||
// 将裁剪坐标初始化为图像的边界 | ||
xMin, xMax := w, 0 | ||
yMin, yMax := h, 0 | ||
|
||
// 找到边界框的最小和最大坐标 | ||
for _, cell := range cells { | ||
xMin = min(xMin, cell.Rectangle.Min.X) | ||
yMin = min(yMin, cell.Rectangle.Min.Y) | ||
xMax = max(xMax, cell.Rectangle.Max.X) | ||
yMax = max(yMax, cell.Rectangle.Max.Y) | ||
} | ||
|
||
// 边界框到图像边缘的距离 | ||
dToLeft := xMin | ||
dToRight := w - xMax | ||
dToTop := yMin | ||
dToBottom := h - yMax | ||
|
||
// 随机扩大裁剪区域 | ||
rand.NewSource(time.Now().UnixNano()) | ||
cropXMin := int(float64(xMin) - rand.Float64()*float64(dToLeft)) | ||
cropYMin := int(float64(yMin) - rand.Float64()*float64(dToTop)) | ||
cropXMax := int(float64(xMax) + rand.Float64()*float64(dToRight)) | ||
cropYMax := int(float64(yMax) + rand.Float64()*float64(dToBottom)) | ||
|
||
// 确保裁剪坐标不超出范围 | ||
cropXMin = max(0, cropXMin) | ||
cropYMin = max(0, cropYMin) | ||
cropXMax = min(w, cropXMax) | ||
cropYMax = min(h, cropYMax) | ||
|
||
// 裁剪图像 | ||
croppedImg := img.Region(image.Rect(cropXMin, cropYMin, cropXMax, cropYMax)) | ||
|
||
// 调整边界框 | ||
croppedBBoxes := make([]Cell, len(cells)) | ||
for i, cell := range cells { | ||
newXMin := cell.Rectangle.Min.X - cropXMin | ||
newYMin := cell.Rectangle.Min.Y - cropYMin | ||
newXMax := cell.Rectangle.Max.X - cropXMin | ||
newYMax := cell.Rectangle.Max.Y - cropYMin | ||
croppedBBoxes[i] = Cell{LabelId: cell.LabelId, Rectangle: image.Rect(newXMin, newYMin, newXMax, newYMax)} | ||
} | ||
|
||
return croppedImg, croppedBBoxes | ||
} | ||
|
||
// 平移 | ||
func (a *DataAugment) shiftImgAndBBoxes(img gocv.Mat, cells []Cell) (gocv.Mat, []Cell) { | ||
defer img.Close() | ||
h := img.Rows() | ||
w := img.Cols() | ||
|
||
// 初始化变量以查找包含所有框的边界框 | ||
xMin, xMax := w, 0 | ||
yMin, yMax := h, 0 | ||
|
||
// 找到边界框的最小和最大坐标 | ||
for _, cell := range cells { | ||
xMin = min(xMin, cell.Rectangle.Min.X) | ||
yMin = min(yMin, cell.Rectangle.Min.Y) | ||
xMax = max(xMax, cell.Rectangle.Max.X) | ||
yMax = max(yMax, cell.Rectangle.Max.Y) | ||
} | ||
|
||
// 计算最大移动距离 | ||
dToLeft := xMin | ||
dToRight := w - xMax | ||
dToTop := yMin | ||
dToBottom := h - yMax | ||
|
||
// 随机选择移位值 | ||
rand.NewSource(time.Now().UnixNano()) | ||
xShift := rand.Float64()*((float64(dToRight)-1)/3) - ((float64(dToLeft) - 1) / 3) | ||
yShift := rand.Float64()*((float64(dToBottom)-1)/3) - ((float64(dToTop) - 1) / 3) | ||
|
||
// 定义用于平移的仿射变换矩阵 | ||
M := gocv.NewMatWithSize(2, 3, gocv.MatTypeCV32F) | ||
defer M.Close() | ||
M.SetFloatAt(0, 0, 1) | ||
M.SetFloatAt(0, 1, 0) | ||
M.SetFloatAt(0, 2, float32(xShift)) | ||
M.SetFloatAt(1, 0, 0) | ||
M.SetFloatAt(1, 1, 1) | ||
M.SetFloatAt(1, 2, float32(yShift)) | ||
|
||
// 应用仿射变换来移动图像 | ||
shiftedImg := gocv.NewMat() | ||
gocv.WarpAffine(img, &shiftedImg, M, image.Pt(w, h)) | ||
|
||
// 调整边界框 | ||
shiftedBBoxes := make([]Cell, len(cells)) | ||
for i, cell := range cells { | ||
newXMin := int(float64(cell.Rectangle.Min.X) + xShift) | ||
newYMin := int(float64(cell.Rectangle.Min.Y) + yShift) | ||
newXMax := int(float64(cell.Rectangle.Max.X) + xShift) | ||
newYMax := int(float64(cell.Rectangle.Max.Y) + yShift) | ||
shiftedBBoxes[i] = Cell{LabelId: cell.LabelId, Rectangle: image.Rect(newXMin, newYMin, newXMax, newYMax)} | ||
} | ||
|
||
return shiftedImg, shiftedBBoxes | ||
} | ||
|
||
// 镜像 | ||
func (a *DataAugment) flipImgAndBBoxes(img gocv.Mat, cells []Cell) (gocv.Mat, []Cell) { | ||
defer img.Close() | ||
h := img.Rows() | ||
w := img.Cols() | ||
|
||
rand.NewSource(time.Now().UnixNano()) | ||
sed := rand.Float64() | ||
|
||
var flipMode int | ||
if sed < 0.33 { | ||
flipMode = 0 // 0.33的概率水平翻转 | ||
} else if sed < 0.66 { | ||
flipMode = 1 // 0.33的概率垂直翻转 | ||
} else { | ||
flipMode = -1 // 0.33是对角反转 | ||
} | ||
|
||
flipImg := gocv.NewMat() | ||
gocv.Flip(img, &flipImg, flipMode) | ||
|
||
// 调整边界框 | ||
flipBBoxes := make([]Cell, len(cells)) | ||
for i, cell := range cells { | ||
xMin := cell.Rectangle.Min.X | ||
yMin := cell.Rectangle.Min.Y | ||
xMax := cell.Rectangle.Max.X | ||
yMax := cell.Rectangle.Max.Y | ||
|
||
if flipMode == 0 { | ||
flipBBoxes[i] = Cell{LabelId: cell.LabelId, Rectangle: image.Rect(xMin, h-yMax, xMax, h-yMin)} | ||
} else if flipMode == 1 { | ||
flipBBoxes[i] = Cell{LabelId: cell.LabelId, Rectangle: image.Rect(w-xMax, yMin, w-xMin, yMax)} | ||
} else { | ||
flipBBoxes[i] = Cell{LabelId: cell.LabelId, Rectangle: image.Rect(w-xMax, h-yMax, w-xMin, h-yMin)} | ||
} | ||
} | ||
|
||
return flipImg, flipBBoxes | ||
} | ||
|
||
func (a *DataAugment) Augment(img gocv.Mat, cells []Cell) (gocv.Mat, []Cell) { | ||
rand.NewSource(time.Now().UnixNano()) | ||
|
||
if a.IsRotateImgBbox { | ||
if rand.Float64() < a.RotationRate { // 旋转 | ||
angle := randomUniformInt(-a.MaxRotationAngle, a.MaxRotationAngle) | ||
scale := randomUniformFloat64(0.7, 0.8) | ||
img, cells = a.rotateImageBBbox(img, cells, angle, scale) | ||
} | ||
} | ||
|
||
if a.IsShiftPicBBoxes { | ||
if rand.Float64() < a.ShiftRate { // 平移 | ||
img, cells = a.shiftImgAndBBoxes(img, cells) | ||
} | ||
} | ||
|
||
if a.IsChangeLight { | ||
if rand.Float64() < a.ChangeLightRate { // 改变亮度 | ||
img = a.changeLight(img) | ||
} | ||
} | ||
|
||
if a.IsAddNoise { | ||
if rand.Float64() < a.AddNoiseRate { // 加噪声 | ||
img = a.addNoise(img) | ||
} | ||
} | ||
|
||
if a.IsCutout { | ||
if rand.Float64() < a.CutoutRate { // cutout | ||
img = a.cutout(img, cells, a.CutOutLength, a.CutOutHoles, a.CutOutThreshold) | ||
} | ||
} | ||
|
||
if a.IsFlipPicBBoxes { | ||
if rand.Float64() < a.FlipRate { // 翻转 | ||
img, cells = a.flipImgAndBBoxes(img, cells) | ||
} | ||
} | ||
|
||
if a.IsCropImgBBoxes { | ||
if rand.Float64() < a.CropRate { // 裁剪 | ||
img, cells = a.cropImgAndBBoxes(img, cells) | ||
} | ||
} | ||
|
||
return img, cells | ||
} |
Oops, something went wrong.