Skip to content

Commit

Permalink
[Docs] Refine the C++ API usage example in the RTMPose documentation (#…
Browse files Browse the repository at this point in the history
  • Loading branch information
willyfh authored Dec 25, 2023
1 parent 464635a commit 346030b
Show file tree
Hide file tree
Showing 2 changed files with 68 additions and 68 deletions.
68 changes: 34 additions & 34 deletions projects/rtmpose/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -1023,51 +1023,51 @@ if __name__ == '__main__':
Here is a basic example of SDK C++ API:

```C++
#include "mmdeploy/detector.hpp"

#include "opencv2/imgcodecs/imgcodecs.hpp"
#include "utils/argparse.h"
#include "utils/visualize.h"

DEFINE_ARG_string(model, "Model path");
DEFINE_ARG_string(image, "Input image path");
DEFINE_string(device, "cpu", R"(Device name, e.g. "cpu", "cuda")");
DEFINE_string(output, "detector_output.jpg", "Output image path");

DEFINE_double(det_thr, .5, "Detection score threshold");
#include "mmdeploy/pose_detector.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "utils/argparse.h" // See: https://github.com/open-mmlab/mmdeploy/blob/main/demo/csrc/cpp/utils/argparse.h

DEFINE_ARG_string(model_path, "Model path");
DEFINE_ARG_string(image_path, "Input image path");
DEFINE_string(device_name, "cpu", R"(Device name, e.g. "cpu", "cuda")");
DEFINE_int32(bbox_x, -1, R"(x position of the bounding box)");
DEFINE_int32(bbox_y, -1, R"(y position of the bounding box)");
DEFINE_int32(bbox_w, -1, R"(width of the bounding box)");
DEFINE_int32(bbox_h, -1, R"(height of the bounding box)");

int main(int argc, char* argv[]) {
if (!utils::ParseArguments(argc, argv)) {
return -1;
}

cv::Mat img = cv::imread(ARGS_image);
if (img.empty()) {
fprintf(stderr, "failed to load image: %s\n", ARGS_image.c_str());
return -1;
}
cv::Mat img = cv::imread(ARGS_image_path);

mmdeploy::PoseDetector detector(mmdeploy::Model{ARGS_model_path}, mmdeploy::Device{FLAGS_device_name, 0});

// construct a detector instance
mmdeploy::Detector detector(mmdeploy::Model{ARGS_model}, mmdeploy::Device{FLAGS_device});

// apply the detector, the result is an array-like class holding references to
// `mmdeploy_detection_t`, will be released automatically on destruction
mmdeploy::Detector::Result dets = detector.Apply(img);

// visualize
utils::Visualize v;
auto sess = v.get_session(img);
int count = 0;
for (const mmdeploy_detection_t& det : dets) {
if (det.score > FLAGS_det_thr) { // filter bboxes
sess.add_det(det.bbox, det.label_id, det.score, det.mask, count++);
}
mmdeploy::PoseDetector::Result result{0, 0, nullptr};

if (FLAGS_bbox_x == -1 || FLAGS_bbox_y == -1 || FLAGS_bbox_w == -1 || FLAGS_bbox_h == -1) {
result = detector.Apply(img);
} else {
// convert (x, y, w, h) -> (left, top, right, bottom)
mmdeploy::cxx::Rect rect;
rect.left = FLAGS_bbox_x;
rect.top = FLAGS_bbox_y;
rect.right = FLAGS_bbox_x + FLAGS_bbox_w;
rect.bottom = FLAGS_bbox_y + FLAGS_bbox_h;
result = detector.Apply(img, {rect});
}

if (!FLAGS_output.empty()) {
cv::imwrite(FLAGS_output, sess.get());
// Draw circles at detected keypoints
for (size_t i = 0; i < result[0].length; ++i) {
cv::Point keypoint(result[0].point[i].x, result[0].point[i].y);
cv::circle(img, keypoint, 1, cv::Scalar(0, 255, 0), 2); // Draw filled circle
}

// Save the output image
cv::imwrite("output_pose.png", img);

return 0;
}
```
Expand Down
68 changes: 34 additions & 34 deletions projects/rtmpose/README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -1016,51 +1016,51 @@ if __name__ == '__main__':
#### C++ API

```C++
#include "mmdeploy/detector.hpp"

#include "opencv2/imgcodecs/imgcodecs.hpp"
#include "utils/argparse.h"
#include "utils/visualize.h"

DEFINE_ARG_string(model, "Model path");
DEFINE_ARG_string(image, "Input image path");
DEFINE_string(device, "cpu", R"(Device name, e.g. "cpu", "cuda")");
DEFINE_string(output, "detector_output.jpg", "Output image path");

DEFINE_double(det_thr, .5, "Detection score threshold");
#include "mmdeploy/pose_detector.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "utils/argparse.h" // See: https://github.com/open-mmlab/mmdeploy/blob/main/demo/csrc/cpp/utils/argparse.h

DEFINE_ARG_string(model_path, "Model path");
DEFINE_ARG_string(image_path, "Input image path");
DEFINE_string(device_name, "cpu", R"(Device name, e.g. "cpu", "cuda")");
DEFINE_int32(bbox_x, -1, R"(x position of the bounding box)");
DEFINE_int32(bbox_y, -1, R"(y position of the bounding box)");
DEFINE_int32(bbox_w, -1, R"(width of the bounding box)");
DEFINE_int32(bbox_h, -1, R"(height of the bounding box)");

int main(int argc, char* argv[]) {
if (!utils::ParseArguments(argc, argv)) {
return -1;
}

cv::Mat img = cv::imread(ARGS_image);
if (img.empty()) {
fprintf(stderr, "failed to load image: %s\n", ARGS_image.c_str());
return -1;
}
cv::Mat img = cv::imread(ARGS_image_path);

mmdeploy::PoseDetector detector(mmdeploy::Model{ARGS_model_path}, mmdeploy::Device{FLAGS_device_name, 0});

// construct a detector instance
mmdeploy::Detector detector(mmdeploy::Model{ARGS_model}, mmdeploy::Device{FLAGS_device});

// apply the detector, the result is an array-like class holding references to
// `mmdeploy_detection_t`, will be released automatically on destruction
mmdeploy::Detector::Result dets = detector.Apply(img);

// visualize
utils::Visualize v;
auto sess = v.get_session(img);
int count = 0;
for (const mmdeploy_detection_t& det : dets) {
if (det.score > FLAGS_det_thr) { // filter bboxes
sess.add_det(det.bbox, det.label_id, det.score, det.mask, count++);
}
mmdeploy::PoseDetector::Result result{0, 0, nullptr};

if (FLAGS_bbox_x == -1 || FLAGS_bbox_y == -1 || FLAGS_bbox_w == -1 || FLAGS_bbox_h == -1) {
result = detector.Apply(img);
} else {
// convert (x, y, w, h) -> (left, top, right, bottom)
mmdeploy::cxx::Rect rect;
rect.left = FLAGS_bbox_x;
rect.top = FLAGS_bbox_y;
rect.right = FLAGS_bbox_x + FLAGS_bbox_w;
rect.bottom = FLAGS_bbox_y + FLAGS_bbox_h;
result = detector.Apply(img, {rect});
}

if (!FLAGS_output.empty()) {
cv::imwrite(FLAGS_output, sess.get());
// Draw circles at detected keypoints
for (size_t i = 0; i < result[0].length; ++i) {
cv::Point keypoint(result[0].point[i].x, result[0].point[i].y);
cv::circle(img, keypoint, 1, cv::Scalar(0, 255, 0), 2); // Draw filled circle
}

// Save the output image
cv::imwrite("output_pose.png", img);

return 0;
}
```
Expand Down

0 comments on commit 346030b

Please sign in to comment.