Skip to content

paganol/euclid_windows

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EUCLID photometric window functions

This repository builts EUCLID photometric window functions

Installation

git clone https://github.com/paganol/euclid_windows.git 
cd euclid_windows
pip install -e .

Usage

import euclid_windows as EW

#This initializes the container 
Win = EW.Windows()

#This computes the windows and other useful variables
Win.get_distributions()

#This returns the list of window functions ready for camb
sources = Win.get_camb_distributions()

Parameters

  • zmin: minimum redshift, replaced if you provide bin ranges in the variable bintype.

  • zmax: maximum redshift, replaced if you provide bin ranges in the variable bintype.

  • zmaxsampled: maximum redshift sampled, if not provied zmax is used.

  • nbin: number of bins, replaced if you provide bin ranges in the variable bintype.

  • use_true_galactic_dist: use the true galactic distribution for the windows, no convolution with photo z distribution.

  • dz: integration step in redshift.

  • cb, zb, sigmab, c0, z0, sigma0, fout: parameters of the photo z distribution, see equation 115 and table 5 of 1910.09273.

  • bintype: three options here, "equipopulated", "equispaced", numpy array or list with bin edges.

  • normalize: normalization of the windows.

  • biastype: several options here:

    • "stepwise" with a different constant value for each bin, using $f(z)=\sqrt{1+z}$;
    • "continuous" which implements a continuous function $f(z)=\sqrt{1+z}$;
    • "tutusaus_Flag1" which implements Tutusaus bias (Flagship1);
    • "tutusaus_Flag2" which implements Tutusaus bias (Flagship2);
    • numpy array (or list) with bias provided by the user for each bin.
  • errortype: the default option is "gauss_err", because we expect a gaussian error and then we can compute the galaxy selection functions via an erf function; if the error is not gaussian, we need to compute the integral of the probability distribution function to determine the galaxy selection functions.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages