Skip to content

Latest commit

 

History

History
127 lines (112 loc) · 4.55 KB

README.md

File metadata and controls

127 lines (112 loc) · 4.55 KB

[1] EfficientDet - Scalable and Efficient Object Detection: https://arxiv.org/pdf/1911.09070.pdf
[2] EfficientDet - zylo117 Github: https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
[3] EfficinetNet - Github: https://github.com/lukemelas/EfficientNet-PyTorch

TODO

  • Dataset format including coco, pascal, labelme and altheia.
  • Efficient Det training, inference flow.
  • Add mask head, based on the idea of RetinaMask
  • Augmentations: Mosaic, Mixup, CutMix,...
  • BBox IOU Loss (GIoU, DIoU, CIoU, ...)

MAIN FUNCTIONS

DATASET

ID Dataset Name Train Val Test Format
1 COCO 2017 118,287 5,000 - COCO JSON
2 Pascal VOC 2007 5,011 4,952 - PASCAL XML
3 Pascal VOC 2012 1,464 1,449 - PASCAL XML
4 PubLayNet 335,703 11,245 11,405 COCO JSON
  • COCO Train/Val/Test 2017
https://cocodataset.org/#download
  • Pascal VOC 2007
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
  • Pascal VOC 2012
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
  • Publaynet
https://developer.ibm.com/exchanges/data/all/publaynet/

Note. Run TensorBoard on Server

You have to create a ssh connection using port forwarding:

ssh -L 16006:127.0.0.1:6006 user@host

Then you run the tensorboard command:

tensorboard --logdir=/path/to/logs

Then you can easily access the tensorboard in your browser under:

localhost:16006/

USAGE

VOC 2007, 2012

CUDA_VISIBLE_DEVICES=<cuda_indice> python -m flame configs/PASCAL/pascal_training.yaml
  • Testing
CUDA_VISIBLE_DEVICES=<cuda_indice> python -m flame configs/PASCAL/pascal_testing.yaml
  • Result
Model Parameters Result
EffiDet - D0 3,839,117
EffiDet - D1 - -
EffiDet - D2 - -
EffiDet - D3 - -
EffiDet - D4 - -
EffiDet - D5 - -
EffiDet - D6 - -
EffiDet - D7 - -
EffiDet - D7x - -

COCO

CUDA_VISIBLE_DEVICES=<cuda_indice> python -m flame configs/COCO/coco_training.yaml
  • Testing
CUDA_VISIBLE_DEVICES=<cuda_indice> python -m flame configs/COCO/coco_testing.yaml
  • Result
Model Parameters Result
EffiDet - D0 3,874,217
EffiDet - D1 - -
EffiDet - D2 - -
EffiDet - D3 - -
EffiDet - D4 - -
EffiDet - D5 - -
EffiDet - D6 - -
EffiDet - D7 - -
EffiDet - D7x - -

Birdviews