[1] EfficientDet - Scalable and Efficient Object Detection: https://arxiv.org/pdf/1911.09070.pdf
[2] EfficientDet - zylo117 Github: https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
[3] EfficinetNet - Github: https://github.com/lukemelas/EfficientNet-PyTorch
- Dataset format including coco, pascal, labelme and altheia.
- Efficient Det training, inference flow.
- Add mask head, based on the idea of RetinaMask
- Augmentations: Mosaic, Mixup, CutMix,...
- BBox IOU Loss (GIoU, DIoU, CIoU, ...)
- Using soft-nms instead of normal NMS.
- FP16 (automatic mixed precision)
- DDP (DistributedDataParallel) for faster training on GPUs.
- Tensorboard, Logger.
- Profiler.
- Backbone using all variants of Efficient NetV1
- BiFPN
- Regression and Classification Head
- Anchor Generation
- Efficient Det: combinating all parts together including Efficient NetV1 (backbone), BiFPN (neck), Regressor&Classifier(head) and Anchors
- Focal Loss
- COCO Eval
- mAP
- Visualization for predicting results
ID | Dataset Name | Train | Val | Test | Format |
---|---|---|---|---|---|
1 | COCO 2017 | 118,287 | 5,000 | - | COCO JSON |
2 | Pascal VOC 2007 | 5,011 | 4,952 | - | PASCAL XML |
3 | Pascal VOC 2012 | 1,464 | 1,449 | - | PASCAL XML |
4 | PubLayNet | 335,703 | 11,245 | 11,405 | COCO JSON |
- COCO Train/Val/Test 2017
https://cocodataset.org/#download
- Pascal VOC 2007
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
- Pascal VOC 2012
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
- Publaynet
https://developer.ibm.com/exchanges/data/all/publaynet/
You have to create a ssh connection using port forwarding:
ssh -L 16006:127.0.0.1:6006 user@host
Then you run the tensorboard command:
tensorboard --logdir=/path/to/logs
Then you can easily access the tensorboard in your browser under:
localhost:16006/
CUDA_VISIBLE_DEVICES=<cuda_indice> python -m flame configs/PASCAL/pascal_training.yaml
- Testing
CUDA_VISIBLE_DEVICES=<cuda_indice> python -m flame configs/PASCAL/pascal_testing.yaml
- Result
Model | Parameters | Result |
---|---|---|
EffiDet - D0 | 3,839,117 | |
EffiDet - D1 | - | - |
EffiDet - D2 | - | - |
EffiDet - D3 | - | - |
EffiDet - D4 | - | - |
EffiDet - D5 | - | - |
EffiDet - D6 | - | - |
EffiDet - D7 | - | - |
EffiDet - D7x | - | - |
CUDA_VISIBLE_DEVICES=<cuda_indice> python -m flame configs/COCO/coco_training.yaml
- Testing
CUDA_VISIBLE_DEVICES=<cuda_indice> python -m flame configs/COCO/coco_testing.yaml
- Result
Model | Parameters | Result |
---|---|---|
EffiDet - D0 | 3,874,217 | |
EffiDet - D1 | - | - |
EffiDet - D2 | - | - |
EffiDet - D3 | - | - |
EffiDet - D4 | - | - |
EffiDet - D5 | - | - |
EffiDet - D6 | - | - |
EffiDet - D7 | - | - |
EffiDet - D7x | - | - |