-
Notifications
You must be signed in to change notification settings - Fork 83
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
docs(layout_columns): Add example app (#903)
- Loading branch information
Showing
2 changed files
with
89 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
from model_plots import * # model plots and cards | ||
|
||
from shiny import App, Inputs, Outputs, Session, render, ui | ||
|
||
app_ui = ui.page_fluid( | ||
ui.panel_title(ui.h2("Model Dashboard")), | ||
ui.markdown("Using `ui.layout_columns()` for the layout."), | ||
ui.layout_columns( | ||
card_loss, | ||
card_acc, | ||
card_feat, | ||
col_widths={"sm": (5, 7, 12)}, | ||
# row_heights=(2, 3), | ||
# height="700px", | ||
), | ||
) | ||
|
||
|
||
def server(input: Inputs, output: Outputs, session: Session): | ||
@render.plot | ||
def loss_over_time(): | ||
return plot_loss_over_time() | ||
|
||
@render.plot | ||
def accuracy_over_time(): | ||
return plot_accuracy_over_time() | ||
|
||
@render.plot | ||
def feature_importance(): | ||
return plot_feature_importance() | ||
|
||
|
||
app = App(app_ui, server) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
|
||
from shiny import ui | ||
|
||
|
||
def plot_loss_over_time(): | ||
epochs = np.arange(1, 101) | ||
loss = 1000 / np.sqrt(epochs) + np.random.rand(100) * 25 | ||
|
||
fig = plt.figure(figsize=(10, 6)) | ||
plt.plot(epochs, loss) | ||
plt.xlabel("Epochs") | ||
plt.ylabel("Loss") | ||
return fig | ||
|
||
|
||
def plot_accuracy_over_time(): | ||
epochs = np.arange(1, 101) | ||
accuracy = np.sqrt(epochs) / 12 + np.random.rand(100) * 0.15 | ||
accuracy = [np.min([np.max(accuracy[:i]), 1]) for i in range(1, 101)] | ||
|
||
fig = plt.figure(figsize=(10, 6)) | ||
plt.plot(epochs, accuracy) | ||
plt.xlabel("Epochs") | ||
plt.ylabel("Accuracy") | ||
return fig | ||
|
||
|
||
def plot_feature_importance(): | ||
features = ["Product Category", "Price", "Brand", "Rating", "Number of Reviews"] | ||
importance = np.random.rand(5) | ||
|
||
fig = plt.figure(figsize=(10, 6)) | ||
plt.barh(features, importance) | ||
plt.xlabel("Importance") | ||
return fig | ||
|
||
|
||
card_loss = ui.card( | ||
ui.card_header("Loss Over Time"), | ||
ui.output_plot("loss_over_time"), | ||
full_screen=True, | ||
) | ||
|
||
card_acc = ui.card( | ||
ui.card_header("Accuracy Over Time"), | ||
ui.output_plot("accuracy_over_time"), | ||
full_screen=True, | ||
) | ||
|
||
card_feat = ui.card( | ||
ui.card_header("Feature Importance"), | ||
ui.output_plot("feature_importance"), | ||
full_screen=True, | ||
) |