Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BugFix] skip_done_states in SAC #2613

Merged
merged 2 commits into from
Dec 2, 2024
Merged

Conversation

vmoens
Copy link
Contributor

@vmoens vmoens commented Nov 27, 2024

Stack from ghstack (oldest at bottom):

[ghstack-poisoned]
vmoens added a commit that referenced this pull request Nov 27, 2024
ghstack-source-id: f534c53d30af035edb2e3b5291d4db71313086fd
Pull Request resolved: #2613
Copy link

pytorch-bot bot commented Nov 27, 2024

🔗 Helpful Links

🧪 See artifacts and rendered test results at hud.pytorch.org/pr/pytorch/rl/2613

Note: Links to docs will display an error until the docs builds have been completed.

❌ 4 New Failures, 8 Unrelated Failures

As of commit ca35b99 with merge base 90c8e40 (image):

NEW FAILURES - The following jobs have failed:

BROKEN TRUNK - The following jobs failed but were present on the merge base:

👉 Rebase onto the `viable/strict` branch to avoid these failures

This comment was automatically generated by Dr. CI and updates every 15 minutes.

@facebook-github-bot facebook-github-bot added the CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. label Nov 27, 2024
@vmoens vmoens mentioned this pull request Nov 27, 2024
Copy link
Contributor

@matteobettini matteobettini left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM thanks!

One other option to consider to avoid changing the input shape in case the user sets this flag is to ask what to use to pad the non-terminated obs

@@ -126,6 +126,10 @@ class SACLoss(LossModule):
``"none"`` | ``"mean"`` | ``"sum"``. ``"none"``: no reduction will be applied,
``"mean"``: the sum of the output will be divided by the number of
elements in the output, ``"sum"``: the output will be summed. Default: ``"mean"``.
skip_done_states (bool, optional): whether the actor network should only be run on valid, non-terminating
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
skip_done_states (bool, optional): whether the actor network should only be run on valid, non-terminating
skip_done_states (bool, optional): whether the actor network used for value computation should only be run on valid, non-terminating

@@ -877,6 +891,10 @@ class DiscreteSACLoss(LossModule):
``"none"`` | ``"mean"`` | ``"sum"``. ``"none"``: no reduction will be applied,
``"mean"``: the sum of the output will be divided by the number of
elements in the output, ``"sum"``: the output will be summed. Default: ``"mean"``.
skip_done_states (bool, optional): whether the actor network should only be run on valid, non-terminating
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

same as above

@vmoens
Copy link
Contributor Author

vmoens commented Nov 27, 2024

LGTM thanks!

One other option to consider to avoid changing the input shape in case the user sets this flag is to ask what to use to pad the non-terminated obs

See this comment

@vmoens vmoens added the bug Something isn't working label Nov 27, 2024
@matteobettini
Copy link
Contributor

matteobettini commented Nov 27, 2024

LGTM thanks!
One other option to consider to avoid changing the input shape in case the user sets this flag is to ask what to use to pad the non-terminated obs

See this comment

Yes I saw. I was referring exactly to that. Maybe there are users who have such issue but also need an input with the same shape (cholesky expects a matrix for isntance). in that case they might know what works for them (maybe NaN and 0 no but 1 yes)

Just an idea, we don't need to do it

@vmoens
Copy link
Contributor Author

vmoens commented Nov 27, 2024

Yes I saw. I was referring exactly to that. Maybe there are users who have such issue but also need an input with the same shape (cholesky expects a matrix for isntance). in that case they might know what works for them (maybe nana and 0 no but 1 yes)

with cholesky (if we want to take that example), any fixed number filling the matrix will fail. Padding is simply not a solution unfortunately.

@matteobettini
Copy link
Contributor

ok got it

[ghstack-poisoned]
vmoens added a commit that referenced this pull request Dec 2, 2024
ghstack-source-id: 39d97360e3b0e45dd8c327487eac50ddafe2254d
Pull Request resolved: #2613
Copy link

github-actions bot commented Dec 2, 2024

$\color{#D29922}\textsf{\Large⚠\kern{0.2cm}\normalsize Warning}$ Result of GPU Benchmark Tests

Total Benchmarks: 149. Improved: $\large\color{#35bf28}17$. Worsened: $\large\color{#d91a1a}8$.

Expand to view detailed results
Name Max Mean Ops Ops on Repo HEAD Change
test_simple 0.7652s 0.7553s 1.3239 Ops/s 1.2894 Ops/s $\color{#35bf28}+2.68\%$
test_transformed 1.1032s 1.0231s 0.9774 Ops/s 0.9781 Ops/s $\color{#d91a1a}-0.08\%$
test_serial 2.2471s 2.1677s 0.4613 Ops/s 0.4565 Ops/s $\color{#35bf28}+1.05\%$
test_parallel 2.0935s 2.0028s 0.4993 Ops/s 0.4981 Ops/s $\color{#35bf28}+0.24\%$
test_step_mdp_speed[True-True-True-True-True] 0.1914ms 38.8791μs 25.7207 KOps/s 25.6733 KOps/s $\color{#35bf28}+0.18\%$
test_step_mdp_speed[True-True-True-True-False] 54.2600μs 22.6428μs 44.1642 KOps/s 44.2796 KOps/s $\color{#d91a1a}-0.26\%$
test_step_mdp_speed[True-True-True-False-True] 54.7010μs 21.5534μs 46.3964 KOps/s 46.4754 KOps/s $\color{#d91a1a}-0.17\%$
test_step_mdp_speed[True-True-True-False-False] 40.7810μs 12.5305μs 79.8051 KOps/s 79.3600 KOps/s $\color{#35bf28}+0.56\%$
test_step_mdp_speed[True-True-False-True-True] 79.1610μs 41.1514μs 24.3005 KOps/s 23.9126 KOps/s $\color{#35bf28}+1.62\%$
test_step_mdp_speed[True-True-False-True-False] 59.2310μs 24.2130μs 41.3002 KOps/s 40.6053 KOps/s $\color{#35bf28}+1.71\%$
test_step_mdp_speed[True-True-False-False-True] 59.8610μs 23.5655μs 42.4349 KOps/s 41.6182 KOps/s $\color{#35bf28}+1.96\%$
test_step_mdp_speed[True-True-False-False-False] 49.7710μs 14.5749μs 68.6113 KOps/s 68.9127 KOps/s $\color{#d91a1a}-0.44\%$
test_step_mdp_speed[True-False-True-True-True] 95.3210μs 43.7812μs 22.8408 KOps/s 22.3496 KOps/s $\color{#35bf28}+2.20\%$
test_step_mdp_speed[True-False-True-True-False] 68.4310μs 26.5952μs 37.6008 KOps/s 37.6781 KOps/s $\color{#d91a1a}-0.21\%$
test_step_mdp_speed[True-False-True-False-True] 54.5300μs 23.6229μs 42.3318 KOps/s 41.8566 KOps/s $\color{#35bf28}+1.14\%$
test_step_mdp_speed[True-False-True-False-False] 50.3010μs 14.5841μs 68.5678 KOps/s 68.0094 KOps/s $\color{#35bf28}+0.82\%$
test_step_mdp_speed[True-False-False-True-True] 76.4110μs 45.3332μs 22.0589 KOps/s 21.6110 KOps/s $\color{#35bf28}+2.07\%$
test_step_mdp_speed[True-False-False-True-False] 62.8310μs 28.8313μs 34.6845 KOps/s 35.7247 KOps/s $\color{#d91a1a}-2.91\%$
test_step_mdp_speed[True-False-False-False-True] 57.6610μs 26.0519μs 38.3849 KOps/s 38.2054 KOps/s $\color{#35bf28}+0.47\%$
test_step_mdp_speed[True-False-False-False-False] 57.4710μs 16.6030μs 60.2301 KOps/s 59.3653 KOps/s $\color{#35bf28}+1.46\%$
test_step_mdp_speed[False-True-True-True-True] 79.0710μs 43.6489μs 22.9101 KOps/s 22.4352 KOps/s $\color{#35bf28}+2.12\%$
test_step_mdp_speed[False-True-True-True-False] 54.0810μs 26.7376μs 37.4006 KOps/s 37.2285 KOps/s $\color{#35bf28}+0.46\%$
test_step_mdp_speed[False-True-True-False-True] 60.1110μs 27.4161μs 36.4749 KOps/s 36.0821 KOps/s $\color{#35bf28}+1.09\%$
test_step_mdp_speed[False-True-True-False-False] 47.1310μs 16.2336μs 61.6007 KOps/s 60.0473 KOps/s $\color{#35bf28}+2.59\%$
test_step_mdp_speed[False-True-False-True-True] 82.1110μs 44.7407μs 22.3510 KOps/s 21.6010 KOps/s $\color{#35bf28}+3.47\%$
test_step_mdp_speed[False-True-False-True-False] 53.7310μs 28.5671μs 35.0053 KOps/s 34.9029 KOps/s $\color{#35bf28}+0.29\%$
test_step_mdp_speed[False-True-False-False-True] 3.2315ms 30.2651μs 33.0414 KOps/s 32.6098 KOps/s $\color{#35bf28}+1.32\%$
test_step_mdp_speed[False-True-False-False-False] 46.9410μs 18.8571μs 53.0304 KOps/s 52.7365 KOps/s $\color{#35bf28}+0.56\%$
test_step_mdp_speed[False-False-True-True-True] 94.0310μs 48.0632μs 20.8060 KOps/s 20.4270 KOps/s $\color{#35bf28}+1.86\%$
test_step_mdp_speed[False-False-True-True-False] 59.6110μs 31.0009μs 32.2571 KOps/s 31.8956 KOps/s $\color{#35bf28}+1.13\%$
test_step_mdp_speed[False-False-True-False-True] 58.1600μs 29.3376μs 34.0859 KOps/s 33.3437 KOps/s $\color{#35bf28}+2.23\%$
test_step_mdp_speed[False-False-True-False-False] 44.9910μs 18.7105μs 53.4458 KOps/s 53.9206 KOps/s $\color{#d91a1a}-0.88\%$
test_step_mdp_speed[False-False-False-True-True] 0.1059ms 49.3715μs 20.2546 KOps/s 20.0727 KOps/s $\color{#35bf28}+0.91\%$
test_step_mdp_speed[False-False-False-True-False] 69.5010μs 32.9365μs 30.3614 KOps/s 30.0191 KOps/s $\color{#35bf28}+1.14\%$
test_step_mdp_speed[False-False-False-False-True] 99.6110μs 30.1068μs 33.2151 KOps/s 32.1528 KOps/s $\color{#35bf28}+3.30\%$
test_step_mdp_speed[False-False-False-False-False] 46.7600μs 20.2617μs 49.3542 KOps/s 48.7690 KOps/s $\color{#35bf28}+1.20\%$
test_values[generalized_advantage_estimate-True-True] 25.3723ms 24.6518ms 40.5649 Ops/s 39.4900 Ops/s $\color{#35bf28}+2.72\%$
test_values[vec_generalized_advantage_estimate-True-True] 0.1089s 3.0821ms 324.4508 Ops/s 332.5569 Ops/s $\color{#d91a1a}-2.44\%$
test_values[td0_return_estimate-False-False] 0.1047ms 81.3424μs 12.2937 KOps/s 11.9892 KOps/s $\color{#35bf28}+2.54\%$
test_values[td1_return_estimate-False-False] 55.7296ms 55.3054ms 18.0814 Ops/s 17.6776 Ops/s $\color{#35bf28}+2.28\%$
test_values[vec_td1_return_estimate-False-False] 1.2778ms 1.0872ms 919.7733 Ops/s 910.4126 Ops/s $\color{#35bf28}+1.03\%$
test_values[td_lambda_return_estimate-True-False] 93.8858ms 89.5857ms 11.1625 Ops/s 11.1335 Ops/s $\color{#35bf28}+0.26\%$
test_values[vec_td_lambda_return_estimate-True-False] 1.2459ms 1.0785ms 927.2187 Ops/s 908.9589 Ops/s $\color{#35bf28}+2.01\%$
test_gae_speed[generalized_advantage_estimate-False-1-512] 24.8364ms 24.5379ms 40.7532 Ops/s 39.3232 Ops/s $\color{#35bf28}+3.64\%$
test_gae_speed[vec_generalized_advantage_estimate-True-1-512] 1.0948ms 0.7638ms 1.3092 KOps/s 1.2694 KOps/s $\color{#35bf28}+3.13\%$
test_gae_speed[vec_generalized_advantage_estimate-False-1-512] 0.7730ms 0.6741ms 1.4836 KOps/s 1.4605 KOps/s $\color{#35bf28}+1.58\%$
test_gae_speed[vec_generalized_advantage_estimate-True-32-512] 1.5398ms 1.4902ms 671.0630 Ops/s 665.5950 Ops/s $\color{#35bf28}+0.82\%$
test_gae_speed[vec_generalized_advantage_estimate-False-32-512] 0.7418ms 0.6877ms 1.4542 KOps/s 1.4276 KOps/s $\color{#35bf28}+1.86\%$
test_dqn_speed[False-None] 1.6535ms 1.4847ms 673.5363 Ops/s 668.1360 Ops/s $\color{#35bf28}+0.81\%$
test_dqn_speed[False-backward] 2.1300ms 2.0844ms 479.7429 Ops/s 474.4762 Ops/s $\color{#35bf28}+1.11\%$
test_dqn_speed[True-None] 0.6585ms 0.5547ms 1.8026 KOps/s 1.8056 KOps/s $\color{#d91a1a}-0.16\%$
test_dqn_speed[True-backward] 1.2751ms 1.2011ms 832.5669 Ops/s 825.2040 Ops/s $\color{#35bf28}+0.89\%$
test_dqn_speed[reduce-overhead-None] 0.6067ms 0.5448ms 1.8356 KOps/s 1.8100 KOps/s $\color{#35bf28}+1.42\%$
test_dqn_speed[reduce-overhead-backward] 1.1115ms 1.0717ms 933.1347 Ops/s 934.5016 Ops/s $\color{#d91a1a}-0.15\%$
test_ddpg_speed[False-None] 3.1539ms 2.8352ms 352.7059 Ops/s 349.5588 Ops/s $\color{#35bf28}+0.90\%$
test_ddpg_speed[False-backward] 4.5877ms 4.1790ms 239.2923 Ops/s 236.5466 Ops/s $\color{#35bf28}+1.16\%$
test_ddpg_speed[True-None] 1.1639ms 1.0822ms 924.0513 Ops/s 912.1166 Ops/s $\color{#35bf28}+1.31\%$
test_ddpg_speed[True-backward] 2.3917ms 2.2916ms 436.3856 Ops/s 431.9472 Ops/s $\color{#35bf28}+1.03\%$
test_ddpg_speed[reduce-overhead-None] 1.1891ms 1.0887ms 918.5485 Ops/s 905.7902 Ops/s $\color{#35bf28}+1.41\%$
test_ddpg_speed[reduce-overhead-backward] 1.8551ms 1.7729ms 564.0477 Ops/s 561.6089 Ops/s $\color{#35bf28}+0.43\%$
test_sac_speed[False-None] 8.5395ms 8.0090ms 124.8596 Ops/s 124.3773 Ops/s $\color{#35bf28}+0.39\%$
test_sac_speed[False-backward] 11.9676ms 11.2685ms 88.7427 Ops/s 88.3798 Ops/s $\color{#35bf28}+0.41\%$
test_sac_speed[True-None] 1.6197ms 1.5364ms 650.8829 Ops/s 638.0909 Ops/s $\color{#35bf28}+2.00\%$
test_sac_speed[True-backward] 3.4872ms 3.3833ms 295.5656 Ops/s 308.3820 Ops/s $\color{#d91a1a}-4.16\%$
test_sac_speed[reduce-overhead-None] 22.6726ms 12.5724ms 79.5395 Ops/s 79.1271 Ops/s $\color{#35bf28}+0.52\%$
test_sac_speed[reduce-overhead-backward] 1.3706ms 1.3321ms 750.7083 Ops/s 663.6652 Ops/s $\textbf{\color{#35bf28}+13.12\%}$
test_redq_speed[False-None] 8.3654ms 7.5101ms 133.1543 Ops/s 132.4374 Ops/s $\color{#35bf28}+0.54\%$
test_redq_speed[False-backward] 12.2516ms 11.3818ms 87.8596 Ops/s 85.3266 Ops/s $\color{#35bf28}+2.97\%$
test_redq_speed[True-None] 2.1227ms 1.9787ms 505.3795 Ops/s 494.4089 Ops/s $\color{#35bf28}+2.22\%$
test_redq_speed[True-backward] 3.9850ms 3.6727ms 272.2795 Ops/s 258.2477 Ops/s $\textbf{\color{#35bf28}+5.43\%}$
test_redq_speed[reduce-overhead-None] 2.4382ms 2.0203ms 494.9789 Ops/s 491.9430 Ops/s $\color{#35bf28}+0.62\%$
test_redq_speed[reduce-overhead-backward] 3.9931ms 3.8307ms 261.0518 Ops/s 257.7229 Ops/s $\color{#35bf28}+1.29\%$
test_redq_deprec_speed[False-None] 9.7106ms 9.0734ms 110.2125 Ops/s 109.4280 Ops/s $\color{#35bf28}+0.72\%$
test_redq_deprec_speed[False-backward] 12.8345ms 12.3183ms 81.1798 Ops/s 80.2326 Ops/s $\color{#35bf28}+1.18\%$
test_redq_deprec_speed[True-None] 2.4248ms 2.3212ms 430.8137 Ops/s 426.4062 Ops/s $\color{#35bf28}+1.03\%$
test_redq_deprec_speed[True-backward] 4.4280ms 3.9694ms 251.9302 Ops/s 234.6653 Ops/s $\textbf{\color{#35bf28}+7.36\%}$
test_redq_deprec_speed[reduce-overhead-None] 2.4611ms 2.3499ms 425.5517 Ops/s 427.5478 Ops/s $\color{#d91a1a}-0.47\%$
test_redq_deprec_speed[reduce-overhead-backward] 4.1676ms 3.9844ms 250.9758 Ops/s 249.0685 Ops/s $\color{#35bf28}+0.77\%$
test_td3_speed[False-None] 8.0724ms 7.9015ms 126.5585 Ops/s 126.9135 Ops/s $\color{#d91a1a}-0.28\%$
test_td3_speed[False-backward] 10.7659ms 10.2450ms 97.6090 Ops/s 97.3983 Ops/s $\color{#35bf28}+0.22\%$
test_td3_speed[True-None] 1.6318ms 1.5690ms 637.3579 Ops/s 631.5007 Ops/s $\color{#35bf28}+0.93\%$
test_td3_speed[True-backward] 3.1570ms 3.0854ms 324.1076 Ops/s 299.0821 Ops/s $\textbf{\color{#35bf28}+8.37\%}$
test_td3_speed[reduce-overhead-None] 49.9059ms 25.5076ms 39.2040 Ops/s 37.1109 Ops/s $\textbf{\color{#35bf28}+5.64\%}$
test_td3_speed[reduce-overhead-backward] 1.4975ms 1.4312ms 698.7146 Ops/s 688.9217 Ops/s $\color{#35bf28}+1.42\%$
test_cql_speed[False-None] 16.7632ms 16.1849ms 61.7861 Ops/s 61.6881 Ops/s $\color{#35bf28}+0.16\%$
test_cql_speed[False-backward] 22.5588ms 21.6941ms 46.0955 Ops/s 45.7940 Ops/s $\color{#35bf28}+0.66\%$
test_cql_speed[True-None] 3.0280ms 2.9005ms 344.7666 Ops/s 340.2673 Ops/s $\color{#35bf28}+1.32\%$
test_cql_speed[True-backward] 5.4654ms 5.0503ms 198.0084 Ops/s 187.1512 Ops/s $\textbf{\color{#35bf28}+5.80\%}$
test_cql_speed[reduce-overhead-None] 21.2693ms 12.9136ms 77.4377 Ops/s 75.9748 Ops/s $\color{#35bf28}+1.93\%$
test_cql_speed[reduce-overhead-backward] 1.6310ms 1.5228ms 656.6881 Ops/s 598.8102 Ops/s $\textbf{\color{#35bf28}+9.67\%}$
test_a2c_speed[False-None] 3.4666ms 3.2634ms 306.4274 Ops/s 313.2432 Ops/s $\color{#d91a1a}-2.18\%$
test_a2c_speed[False-backward] 6.5706ms 6.0963ms 164.0345 Ops/s 155.8410 Ops/s $\textbf{\color{#35bf28}+5.26\%}$
test_a2c_speed[True-None] 1.1242ms 1.0042ms 995.8327 Ops/s 995.8662 Ops/s $-0.00\%$
test_a2c_speed[True-backward] 3.1377ms 2.6497ms 377.4075 Ops/s 359.4725 Ops/s $\color{#35bf28}+4.99\%$
test_a2c_speed[reduce-overhead-None] 0.3875s 12.1683ms 82.1808 Ops/s 86.1405 Ops/s $\color{#d91a1a}-4.60\%$
test_a2c_speed[reduce-overhead-backward] 1.0488ms 1.0020ms 997.9842 Ops/s 879.6677 Ops/s $\textbf{\color{#35bf28}+13.45\%}$
test_ppo_speed[False-None] 3.9590ms 3.7063ms 269.8077 Ops/s 273.3494 Ops/s $\color{#d91a1a}-1.30\%$
test_ppo_speed[False-backward] 7.3167ms 6.8630ms 145.7080 Ops/s 140.3488 Ops/s $\color{#35bf28}+3.82\%$
test_ppo_speed[True-None] 1.0941ms 0.9826ms 1.0178 KOps/s 1.0472 KOps/s $\color{#d91a1a}-2.81\%$
test_ppo_speed[True-backward] 2.6705ms 2.5878ms 386.4336 Ops/s 365.2383 Ops/s $\textbf{\color{#35bf28}+5.80\%}$
test_ppo_speed[reduce-overhead-None] 0.5826ms 0.5064ms 1.9746 KOps/s 1.8820 KOps/s $\color{#35bf28}+4.92\%$
test_ppo_speed[reduce-overhead-backward] 1.0191ms 0.9774ms 1.0231 KOps/s 1.0052 KOps/s $\color{#35bf28}+1.77\%$
test_reinforce_speed[False-None] 2.3551ms 2.2373ms 446.9709 Ops/s 446.0566 Ops/s $\color{#35bf28}+0.20\%$
test_reinforce_speed[False-backward] 3.7442ms 3.2807ms 304.8158 Ops/s 306.3419 Ops/s $\color{#d91a1a}-0.50\%$
test_reinforce_speed[True-None] 0.9031ms 0.8312ms 1.2031 KOps/s 1.2054 KOps/s $\color{#d91a1a}-0.18\%$
test_reinforce_speed[True-backward] 2.7069ms 2.4434ms 409.2706 Ops/s 406.7619 Ops/s $\color{#35bf28}+0.62\%$
test_reinforce_speed[reduce-overhead-None] 21.5579ms 11.2594ms 88.8147 Ops/s 86.5388 Ops/s $\color{#35bf28}+2.63\%$
test_reinforce_speed[reduce-overhead-backward] 1.1409ms 1.0564ms 946.6457 Ops/s 827.6562 Ops/s $\textbf{\color{#35bf28}+14.38\%}$
test_iql_speed[False-None] 9.6872ms 9.1946ms 108.7591 Ops/s 108.0511 Ops/s $\color{#35bf28}+0.66\%$
test_iql_speed[False-backward] 13.5821ms 12.9820ms 77.0297 Ops/s 75.8605 Ops/s $\color{#35bf28}+1.54\%$
test_iql_speed[True-None] 1.9662ms 1.8195ms 549.6009 Ops/s 573.1540 Ops/s $\color{#d91a1a}-4.11\%$
test_iql_speed[True-backward] 4.6591ms 4.2157ms 237.2068 Ops/s 227.3062 Ops/s $\color{#35bf28}+4.36\%$
test_iql_speed[reduce-overhead-None] 19.9842ms 11.2116ms 89.1930 Ops/s 108.5114 Ops/s $\textbf{\color{#d91a1a}-17.80\%}$
test_iql_speed[reduce-overhead-backward] 1.5073ms 1.4338ms 697.4425 Ops/s 631.4249 Ops/s $\textbf{\color{#35bf28}+10.46\%}$
test_rb_sample[TensorDictReplayBuffer-ListStorage-RandomSampler-4000] 7.7746ms 6.4184ms 155.8024 Ops/s 152.2100 Ops/s $\color{#35bf28}+2.36\%$
test_rb_sample[TensorDictReplayBuffer-LazyMemmapStorage-RandomSampler-10000] 0.4893ms 0.2729ms 3.6645 KOps/s 3.2571 KOps/s $\textbf{\color{#35bf28}+12.51\%}$
test_rb_sample[TensorDictReplayBuffer-LazyTensorStorage-RandomSampler-10000] 0.5441ms 0.2621ms 3.8150 KOps/s 3.2797 KOps/s $\textbf{\color{#35bf28}+16.32\%}$
test_rb_sample[TensorDictReplayBuffer-ListStorage-SamplerWithoutReplacement-4000] 6.5368ms 6.1617ms 162.2936 Ops/s 158.1911 Ops/s $\color{#35bf28}+2.59\%$
test_rb_sample[TensorDictReplayBuffer-LazyMemmapStorage-SamplerWithoutReplacement-10000] 2.0892ms 0.2575ms 3.8829 KOps/s 3.8355 KOps/s $\color{#35bf28}+1.24\%$
test_rb_sample[TensorDictReplayBuffer-LazyTensorStorage-SamplerWithoutReplacement-10000] 0.6389ms 0.2380ms 4.2019 KOps/s 4.3007 KOps/s $\color{#d91a1a}-2.30\%$
test_rb_sample[TensorDictReplayBuffer-LazyMemmapStorage-sampler6-10000] 1.4546ms 1.2562ms 796.0437 Ops/s 778.8931 Ops/s $\color{#35bf28}+2.20\%$
test_rb_sample[TensorDictReplayBuffer-LazyTensorStorage-sampler7-10000] 1.4067ms 1.2001ms 833.2796 Ops/s 814.1188 Ops/s $\color{#35bf28}+2.35\%$
test_rb_sample[TensorDictPrioritizedReplayBuffer-ListStorage-None-4000] 6.5559ms 6.3519ms 157.4335 Ops/s 155.6570 Ops/s $\color{#35bf28}+1.14\%$
test_rb_sample[TensorDictPrioritizedReplayBuffer-LazyMemmapStorage-None-10000] 2.1173ms 0.4106ms 2.4355 KOps/s 2.3655 KOps/s $\color{#35bf28}+2.96\%$
test_rb_sample[TensorDictPrioritizedReplayBuffer-LazyTensorStorage-None-10000] 0.6190ms 0.4160ms 2.4040 KOps/s 2.3862 KOps/s $\color{#35bf28}+0.75\%$
test_rb_iterate[TensorDictReplayBuffer-ListStorage-RandomSampler-4000] 6.4755ms 6.2570ms 159.8210 Ops/s 158.7529 Ops/s $\color{#35bf28}+0.67\%$
test_rb_iterate[TensorDictReplayBuffer-LazyMemmapStorage-RandomSampler-10000] 0.8898ms 0.3893ms 2.5684 KOps/s 3.5643 KOps/s $\textbf{\color{#d91a1a}-27.94\%}$
test_rb_iterate[TensorDictReplayBuffer-LazyTensorStorage-RandomSampler-10000] 0.5904ms 0.3272ms 3.0564 KOps/s 3.1658 KOps/s $\color{#d91a1a}-3.46\%$
test_rb_iterate[TensorDictReplayBuffer-ListStorage-SamplerWithoutReplacement-4000] 6.4890ms 6.1704ms 162.0637 Ops/s 159.9331 Ops/s $\color{#35bf28}+1.33\%$
test_rb_iterate[TensorDictReplayBuffer-LazyMemmapStorage-SamplerWithoutReplacement-10000] 1.6561ms 0.3412ms 2.9305 KOps/s 3.9182 KOps/s $\textbf{\color{#d91a1a}-25.21\%}$
test_rb_iterate[TensorDictReplayBuffer-LazyTensorStorage-SamplerWithoutReplacement-10000] 0.5232ms 0.2802ms 3.5683 KOps/s 3.8117 KOps/s $\textbf{\color{#d91a1a}-6.39\%}$
test_rb_iterate[TensorDictPrioritizedReplayBuffer-ListStorage-None-4000] 6.7141ms 6.3711ms 156.9585 Ops/s 154.2934 Ops/s $\color{#35bf28}+1.73\%$
test_rb_iterate[TensorDictPrioritizedReplayBuffer-LazyMemmapStorage-None-10000] 1.1723ms 0.4859ms 2.0579 KOps/s 2.3956 KOps/s $\textbf{\color{#d91a1a}-14.10\%}$
test_rb_iterate[TensorDictPrioritizedReplayBuffer-LazyTensorStorage-None-10000] 0.6456ms 0.4627ms 2.1614 KOps/s 2.3658 KOps/s $\textbf{\color{#d91a1a}-8.64\%}$
test_rb_populate[TensorDictReplayBuffer-ListStorage-RandomSampler-400] 6.9862ms 5.3032ms 188.5646 Ops/s 190.0000 Ops/s $\color{#d91a1a}-0.76\%$
test_rb_populate[TensorDictReplayBuffer-LazyMemmapStorage-RandomSampler-400] 10.5415ms 2.0797ms 480.8469 Ops/s 429.4410 Ops/s $\textbf{\color{#35bf28}+11.97\%}$
test_rb_populate[TensorDictReplayBuffer-LazyTensorStorage-RandomSampler-400] 6.1904ms 1.1926ms 838.4690 Ops/s 829.4628 Ops/s $\color{#35bf28}+1.09\%$
test_rb_populate[TensorDictReplayBuffer-ListStorage-SamplerWithoutReplacement-400] 0.4991s 15.1952ms 65.8101 Ops/s 191.7374 Ops/s $\textbf{\color{#d91a1a}-65.68\%}$
test_rb_populate[TensorDictReplayBuffer-LazyMemmapStorage-SamplerWithoutReplacement-400] 6.8374ms 1.9908ms 502.3172 Ops/s 436.3876 Ops/s $\textbf{\color{#35bf28}+15.11\%}$
test_rb_populate[TensorDictReplayBuffer-LazyTensorStorage-SamplerWithoutReplacement-400] 8.7905ms 1.2712ms 786.6873 Ops/s 872.2520 Ops/s $\textbf{\color{#d91a1a}-9.81\%}$
test_rb_populate[TensorDictPrioritizedReplayBuffer-ListStorage-None-400] 9.0016ms 5.5775ms 179.2929 Ops/s 33.3865 Ops/s $\textbf{\color{#35bf28}+437.02\%}$
test_rb_populate[TensorDictPrioritizedReplayBuffer-LazyMemmapStorage-None-400] 9.0766ms 2.2041ms 453.7087 Ops/s 473.1849 Ops/s $\color{#d91a1a}-4.12\%$
test_rb_populate[TensorDictPrioritizedReplayBuffer-LazyTensorStorage-None-400] 8.2483ms 1.3959ms 716.4038 Ops/s 731.0940 Ops/s $\color{#d91a1a}-2.01\%$
test_rb_extend_sample[ReplayBuffer-LazyTensorStorage-RandomSampler-10000-10000-100-True] 13.3608ms 13.0998ms 76.3373 Ops/s 75.8350 Ops/s $\color{#35bf28}+0.66\%$
test_rb_extend_sample[ReplayBuffer-LazyTensorStorage-RandomSampler-10000-10000-100-False] 18.8224ms 17.2347ms 58.0225 Ops/s 59.0189 Ops/s $\color{#d91a1a}-1.69\%$
test_rb_extend_sample[ReplayBuffer-LazyTensorStorage-RandomSampler-100000-10000-100-True] 18.0168ms 17.7324ms 56.3939 Ops/s 54.7506 Ops/s $\color{#35bf28}+3.00\%$
test_rb_extend_sample[ReplayBuffer-LazyTensorStorage-RandomSampler-100000-10000-100-False] 17.5108ms 16.9293ms 59.0690 Ops/s 58.2699 Ops/s $\color{#35bf28}+1.37\%$
test_rb_extend_sample[ReplayBuffer-LazyTensorStorage-RandomSampler-1000000-10000-100-True] 18.3592ms 17.6483ms 56.6627 Ops/s 55.9090 Ops/s $\color{#35bf28}+1.35\%$
test_rb_extend_sample[ReplayBuffer-LazyTensorStorage-RandomSampler-1000000-10000-100-False] 18.6999ms 18.0007ms 55.5535 Ops/s 54.4755 Ops/s $\color{#35bf28}+1.98\%$

@vmoens vmoens merged commit ca35b99 into gh/vmoens/43/base Dec 2, 2024
61 of 73 checks passed
vmoens added a commit that referenced this pull request Dec 2, 2024
ghstack-source-id: 39d97360e3b0e45dd8c327487eac50ddafe2254d
Pull Request resolved: #2613
@vmoens vmoens deleted the gh/vmoens/43/head branch December 2, 2024 18:33
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants