Skip to content

Commit

Permalink
Merge branch 'master' into Gate-set-tomography
Browse files Browse the repository at this point in the history
  • Loading branch information
renatomello committed Feb 26, 2024
2 parents c9d1a79 + 1eac403 commit afb3eac
Show file tree
Hide file tree
Showing 9 changed files with 1,370 additions and 801 deletions.
542 changes: 542 additions & 0 deletions examples/dbi/DBI_strategy_Pauli-Z_products.ipynb

Large diffs are not rendered by default.

764 changes: 0 additions & 764 deletions examples/dbi/dbi.ipynb

This file was deleted.

562 changes: 562 additions & 0 deletions examples/dbi/dbi_tutorial_basic_intro.ipynb

Large diffs are not rendered by default.

21 changes: 21 additions & 0 deletions poetry.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Empty file added src/qibo/models/dbi/__init__.py
Empty file.
28 changes: 14 additions & 14 deletions src/qibo/models/dbi/double_bracket.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
import hyperopt
import numpy as np

from qibo.config import raise_error
from qibo.hamiltonians import Hamiltonian


Expand Down Expand Up @@ -33,13 +32,12 @@ class DoubleBracketIteration:
Example:
.. testcode::
import numpy as np
from qibo.models.dbi.double_bracket import DoubleBracketIteration, DoubleBracketGeneratorType
from qibo.hamiltonians import Hamiltonian
from qibo.quantum_info import random_hermitian
from qibo.hamiltonians import Hamiltonian
nqubits = 4
h0 = random_hermitian(2**nqubits)
h0 = random_hermitian(2**nqubits, seed=2)
dbf = DoubleBracketIteration(Hamiltonian(nqubits=nqubits, matrix=h0))
# diagonalized matrix
Expand Down Expand Up @@ -68,14 +66,14 @@ def __call__(
)
elif mode is DoubleBracketGeneratorType.single_commutator:
if d is None:
raise_error(ValueError, f"Cannot use group_commutator with matrix {d}")
d = self.diagonal_h_matrix
operator = self.backend.calculate_matrix_exp(
1.0j * step,
self.commutator(d, self.h.matrix),
)
elif mode is DoubleBracketGeneratorType.group_commutator:
if d is None:
raise_error(ValueError, f"Cannot use group_commutator with matrix {d}")
d = self.diagonal_h_matrix
operator = (
self.h.exp(-step)
@ self.backend.calculate_matrix_exp(-step, d)
Expand Down Expand Up @@ -103,12 +101,12 @@ def off_diag_h(self):

@property
def off_diagonal_norm(self):
"""Norm of off-diagonal part of H matrix."""
r"""Hilbert Schmidt norm of off-diagonal part of H matrix, namely :math:`\\text{Tr}(\\sqrt{A^{\\dagger} A})`."""
off_diag_h_dag = self.backend.cast(
np.matrix(self.backend.to_numpy(self.off_diag_h)).getH()
)
return np.real(
np.trace(self.backend.to_numpy(off_diag_h_dag @ self.off_diag_h))
return np.sqrt(
np.real(np.trace(self.backend.to_numpy(off_diag_h_dag @ self.off_diag_h)))
)

@property
Expand All @@ -125,6 +123,7 @@ def hyperopt_step(
optimizer: callable = None,
look_ahead: int = 1,
verbose: bool = False,
d: np.array = None,
):
"""
Optimize iteration step.
Expand All @@ -136,7 +135,8 @@ def hyperopt_step(
space: see hyperopt.hp possibilities;
optimizer: see hyperopt algorithms;
look_ahead: number of iteration steps to compute the loss function;
verbose: level of verbosity.
verbose: level of verbosity;
d: diagonal operator for generating double-bracket iterations.
Returns:
(float): optimized best iteration step.
Expand All @@ -148,28 +148,28 @@ def hyperopt_step(

space = space("step", step_min, step_max)
best = hyperopt.fmin(
fn=partial(self.loss, look_ahead=look_ahead),
fn=partial(self.loss, d=d, look_ahead=look_ahead),
space=space,
algo=optimizer.suggest,
max_evals=max_evals,
verbose=verbose,
)

return best["step"]

def loss(self, step: float, look_ahead: int = 1):
def loss(self, step: float, d: np.array = None, look_ahead: int = 1):
"""
Compute loss function distance between `look_ahead` steps.
Args:
step: iteration step.
d: diagonal operator, use canonical by default.
look_ahead: number of iteration steps to compute the loss function;
"""
# copy initial hamiltonian
h_copy = deepcopy(self.h)

for _ in range(look_ahead):
self.__call__(mode=self.mode, step=step)
self.__call__(mode=self.mode, step=step, d=d)

# off_diagonal_norm's value after the steps
loss = self.off_diagonal_norm
Expand Down
159 changes: 159 additions & 0 deletions src/qibo/models/dbi/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
from copy import deepcopy
from itertools import product
from typing import Optional

import numpy as np
from hyperopt import hp, tpe

from qibo import symbols
from qibo.hamiltonians import SymbolicHamiltonian
from qibo.models.dbi.double_bracket import (
DoubleBracketGeneratorType,
DoubleBracketIteration,
)


def generate_Z_operators(nqubits: int):
"""Generate a dictionary containing 1) all possible products of Pauli Z operators for L = n_qubits and 2) their respective names.
Return: Dictionary with operator names (str) as keys and operators (np.array) as values
Example:
.. testcode::
from qibo.models.dbi.utils import generate_Z_operators
from qibo.models.dbi.double_bracket import DoubleBracketIteration
from qibo.quantum_info import random_hermitian
from qibo.hamiltonians import Hamiltonian
import numpy as np
nqubits = 4
h0 = random_hermitian(2**nqubits)
dbi = DoubleBracketIteration(Hamiltonian(nqubits=nqubits, matrix=h0))
generate_Z = generate_Z_operators(nqubits)
Z_ops = list(generate_Z.values())
delta_h0 = dbi.diagonal_h_matrix
dephasing_channel = (sum([Z_op @ h0 @ Z_op for Z_op in Z_ops])+h0)/2**nqubits
norm_diff = np.linalg.norm(delta_h0 - dephasing_channel)
"""
# list of tuples, e.g. ('Z','I','Z')
combination_strings = product("ZI", repeat=nqubits)
output_dict = {}

for zi_string_combination in combination_strings:
# except for the identity
if "Z" in zi_string_combination:
op_name = "".join(zi_string_combination)
tensor_op = str_to_symbolic(op_name)
# append in output_dict
output_dict[op_name] = SymbolicHamiltonian(tensor_op).dense.matrix
return output_dict


def str_to_symbolic(name: str):
"""Convert string into symbolic hamiltonian.
Example:
.. testcode::
from qibo.models.dbi.utils import str_to_symbolic
op_name = "ZYXZI"
# returns 5-qubit symbolic hamiltonian
ZIXZI_op = str_to_symbolic(op_name)
"""
tensor_op = 1
for qubit, char in enumerate(name):
tensor_op *= getattr(symbols, char)(qubit)
return tensor_op


def select_best_dbr_generator(
dbi_object: DoubleBracketIteration,
d_list: list,
step: Optional[float] = None,
step_min: float = 1e-5,
step_max: float = 1,
max_evals: int = 200,
compare_canonical: bool = True,
):
"""Selects the best double bracket rotation generator from a list and execute the rotation.
Args:
dbi_object (`DoubleBracketIteration`): the target DoubleBracketIteration object.
d_list (list): list of diagonal operators (np.array) to run from.
step (float): fixed iteration duration.
Defaults to ``None``, uses hyperopt.
step_min (float): minimally allowed iteration duration.
step_max (float): maximally allowed iteration duration.
max_evals (int): maximally allowed number of evaluation in hyperopt.
compare_canonical (bool): if `True`, the optimal diagonal operator chosen from "d_list" is compared with the canonical bracket.
Returns:
The updated dbi_object, index of the optimal diagonal operator, respective step duration, and evolution direction.
"""
norms_off_diagonal_restriction = [
dbi_object.off_diagonal_norm for _ in range(len(d_list))
]
optimal_steps, flip_list = [], []
for i, d in enumerate(d_list):
# prescribed step durations
dbi_eval = deepcopy(dbi_object)
flip_list.append(cs_angle_sgn(dbi_eval, d))
if flip_list[i] != 0:
if step is None:
step_best = dbi_eval.hyperopt_step(
d=flip_list[i] * d,
step_min=step_min,
step_max=step_max,
space=hp.uniform,
optimizer=tpe,
max_evals=max_evals,
)
else:
step_best = step
dbi_eval(step=step_best, d=flip_list[i] * d)
optimal_steps.append(step_best)
norms_off_diagonal_restriction[i] = dbi_eval.off_diagonal_norm
# canonical
if compare_canonical is True:
flip_list.append(1)
dbi_eval = deepcopy(dbi_object)
dbi_eval.mode = DoubleBracketGeneratorType.canonical
if step is None:
step_best = dbi_eval.hyperopt_step(
step_min=step_min,
step_max=step_max,
space=hp.uniform,
optimizer=tpe,
max_evals=max_evals,
)
else:
step_best = step
dbi_eval(step=step_best)
optimal_steps.append(step_best)
norms_off_diagonal_restriction.append(dbi_eval.off_diagonal_norm)
# find best d
idx_max_loss = np.argmin(norms_off_diagonal_restriction)
flip = flip_list[idx_max_loss]
step_optimal = optimal_steps[idx_max_loss]
dbi_eval = deepcopy(dbi_object)
if idx_max_loss == len(d_list) and compare_canonical is True:
# canonical
dbi_eval(step=step_optimal, mode=DoubleBracketGeneratorType.canonical)

else:
d_optimal = flip * d_list[idx_max_loss]
dbi_eval(step=step_optimal, d=d_optimal)
return dbi_eval, idx_max_loss, step_optimal, flip


def cs_angle_sgn(dbi_object, d):
"""Calculates the sign of Cauchy-Schwarz Angle :math:`\\langle W(Z), W({\\rm canonical}) \\rangle_{\\rm HS}`."""
norm = np.trace(
np.dot(
np.conjugate(
dbi_object.commutator(dbi_object.diagonal_h_matrix, dbi_object.h.matrix)
).T,
dbi_object.commutator(d, dbi_object.h.matrix),
)
)
return np.sign(norm)
Loading

0 comments on commit afb3eac

Please sign in to comment.