-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #580 from qiboteam/david/twpa_opt
David/twpa opt
- Loading branch information
Showing
3 changed files
with
219 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
207 changes: 207 additions & 0 deletions
207
...bocal/protocols/characterization/readout_optimization/twpa_calibration/frequency_power.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,207 @@ | ||
from dataclasses import dataclass, field | ||
|
||
import numpy as np | ||
import numpy.typing as npt | ||
import plotly.graph_objects as go | ||
from qibolab.platform import Platform | ||
from qibolab.qubits import QubitId | ||
|
||
from qibocal import update | ||
from qibocal.auto.operation import Data, Parameters, Qubits, Results, Routine | ||
from qibocal.protocols.characterization import classification | ||
from qibocal.protocols.characterization.utils import HZ_TO_GHZ, table_dict, table_html | ||
|
||
|
||
@dataclass | ||
class TwpaFrequencyPowerParameters(Parameters): | ||
"""Twpa Frequency Power runcard inputs.""" | ||
|
||
frequency_width: float | ||
"""Frequency total width.""" | ||
frequency_step: float | ||
"""Frequency step to be probed.""" | ||
power_width: float | ||
"""Power total width.""" | ||
power_step: float | ||
"""Power step to be probed.""" | ||
|
||
|
||
TwpaFrequencyPowerType = np.dtype( | ||
[ | ||
("freq", np.float64), | ||
("power", np.float64), | ||
("assignment_fidelity", np.float64), | ||
] | ||
) | ||
|
||
|
||
@dataclass | ||
class TwpaFrequencyPowerData(Data): | ||
"""Twpa Frequency Power acquisition outputs.""" | ||
|
||
data: dict[ | ||
tuple[QubitId, float, float], npt.NDArray[classification.ClassificationType] | ||
] = field(default_factory=dict) | ||
"""Raw data acquired.""" | ||
frequencies: dict[QubitId, float] = field(default_factory=dict) | ||
"""Frequencies for each qubit.""" | ||
powers: dict[QubitId, float] = field(default_factory=dict) | ||
"""Powers for each qubit.""" | ||
|
||
|
||
@dataclass | ||
class TwpaFrequencyPowerResults(Results): | ||
"""Twpa Frequency Power outputs.""" | ||
|
||
best_freqs: dict[QubitId, float] = field(default_factory=dict) | ||
best_powers: dict[QubitId, float] = field(default_factory=dict) | ||
best_fidelities: dict[QubitId, float] = field(default_factory=dict) | ||
|
||
|
||
def _acquisition( | ||
params: TwpaFrequencyPowerParameters, | ||
platform: Platform, | ||
qubits: Qubits, | ||
) -> TwpaFrequencyPowerData: | ||
r""" | ||
Data acquisition for TWPA frequency vs. power optmization. | ||
This protocol perform a classification protocol for twpa frequencies | ||
in the range [twpa_frequency - frequency_width / 2, twpa_frequency + frequency_width / 2] | ||
with step frequency_step and powers in the range [twpa_power - power_width / 2, twpa_power + power_width / 2] | ||
Args: | ||
params (:class:`TwpaFrequencyPowerParameters`): input parameters | ||
platform (:class:`Platform`): Qibolab's platform | ||
qubits (dict): dict of target :class:`Qubit` objects to be characterized | ||
Returns: | ||
data (:class:`TwpaFrequencyPowerData`) | ||
""" | ||
|
||
data = TwpaFrequencyPowerData() | ||
|
||
freq_range = np.arange( | ||
-params.frequency_width / 2, params.frequency_width / 2, params.frequency_step | ||
).astype(int) | ||
power_range = np.arange( | ||
-params.power_width / 2, params.power_width / 2, params.power_step | ||
) | ||
data = TwpaFrequencyPowerData() | ||
|
||
initial_twpa_freq = {} | ||
initial_twpa_power = {} | ||
for qubit in qubits: | ||
initial_twpa_freq[qubit] = platform.qubits[ | ||
qubit | ||
].twpa.local_oscillator.frequency | ||
initial_twpa_power[qubit] = platform.qubits[qubit].twpa.local_oscillator.power | ||
|
||
for freq in freq_range: | ||
platform.qubits[qubit].twpa.local_oscillator.frequency = ( | ||
initial_twpa_freq[qubit] + freq | ||
) | ||
|
||
for power in power_range: | ||
for qubit in qubits: | ||
platform.qubits[qubit].twpa.local_oscillator.power = ( | ||
initial_twpa_power[qubit] + power | ||
) | ||
|
||
classification_data = classification._acquisition( | ||
classification.SingleShotClassificationParameters.load( | ||
{"nshots": params.nshots} | ||
), | ||
platform, | ||
qubits, | ||
) | ||
|
||
classification_result = classification._fit(classification_data) | ||
|
||
data.register_qubit( | ||
TwpaFrequencyPowerType, | ||
(qubit), | ||
dict( | ||
freq=np.array( | ||
[platform.qubits[qubit].twpa.local_oscillator.frequency], | ||
dtype=np.float64, | ||
), | ||
power=np.array( | ||
[platform.qubits[qubit].twpa.local_oscillator.power], | ||
dtype=np.float64, | ||
), | ||
assignment_fidelity=np.array( | ||
[classification_result.assignment_fidelity[qubit]], | ||
), | ||
), | ||
) | ||
return data | ||
|
||
|
||
def _fit(data: TwpaFrequencyPowerData) -> TwpaFrequencyPowerResults: | ||
"""Extract fidelity for each configuration qubit / param. | ||
Where param can be either frequency or power.""" | ||
|
||
best_freq = {} | ||
best_power = {} | ||
best_fidelity = {} | ||
qubits = data.qubits | ||
|
||
for qubit in qubits: | ||
data_qubit = data[qubit] | ||
index_best_err = np.argmax(data_qubit["assignment_fidelity"]) | ||
best_fidelity[qubit] = data_qubit["assignment_fidelity"][index_best_err] | ||
best_freq[qubit] = data_qubit["freq"][index_best_err] | ||
best_power[qubit] = data_qubit["power"][index_best_err] | ||
|
||
return TwpaFrequencyPowerResults(best_freq, best_power, best_fidelity) | ||
|
||
|
||
def _plot(data: TwpaFrequencyPowerData, fit: TwpaFrequencyPowerResults, qubit): | ||
"""Plotting function that shows the assignment fidelity | ||
for different values of the twpa frequency for a single qubit""" | ||
|
||
figures = [] | ||
fitting_report = "" | ||
if fit is not None: | ||
qubit_data = data.data[qubit] | ||
fidelities = qubit_data["assignment_fidelity"] | ||
frequencies = qubit_data["freq"] | ||
powers = qubit_data["power"] | ||
fitting_report = table_html( | ||
table_dict( | ||
qubit, | ||
["Best assignment fidelity", "TWPA Frequency [Hz]", "TWPA Power [dBm]"], | ||
[ | ||
np.round(fit.best_fidelities[qubit], 3), | ||
fit.best_freqs[qubit], | ||
np.round(fit.best_powers[qubit], 3), | ||
], | ||
) | ||
) | ||
|
||
fig = go.Figure( | ||
[ | ||
go.Heatmap( | ||
x=frequencies * HZ_TO_GHZ, y=powers, z=fidelities, name="Fidelity" | ||
) | ||
] | ||
) | ||
|
||
fig.update_layout( | ||
showlegend=True, | ||
xaxis_title="TWPA Frequency [GHz]", | ||
yaxis_title="TWPA Power [dBm]", | ||
) | ||
|
||
figures.append(fig) | ||
|
||
return figures, fitting_report | ||
|
||
|
||
def _update(results: TwpaFrequencyPowerResults, platform: Platform, qubit: QubitId): | ||
update.twpa_frequency(results.best_freqs[qubit], platform, qubit) | ||
update.twpa_power(results.best_powers[qubit], platform, qubit) | ||
|
||
|
||
twpa_frequency_power = Routine(_acquisition, _fit, _plot, _update) | ||
"""Twpa frequency Routine object.""" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters