Skip to content

Commit

Permalink
Changes to units docs
Browse files Browse the repository at this point in the history
  • Loading branch information
cerisola committed Aug 20, 2024
1 parent 73810ad commit b8eac5d
Showing 1 changed file with 14 additions and 10 deletions.
24 changes: 14 additions & 10 deletions docs/src/units.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,10 +27,12 @@ for more details).
SpiDy focuses on the case of an environment with a Lorentzian spectral density,
in which case these equations of motion can be rewritten as
```math
\frac{\mathrm{d}\mathbf{S}}{\mathrm{d}t} =
\begin{align}
\frac{\mathrm{d}\mathbf{S}}{\mathrm{d}t} &=
\gamma_e\mathbf{S}\times\left(\mathbf{B}_\mathrm{ext} + \mathbf{b} + \mathbf{V}\right), \\
\frac{\mathrm{d}\mathbf{V}}{\mathrm{d}t} = \mathbf{W}, \\
\frac{\mathrm{d}\mathbf{W}}{\mathrm{d}t} = \gamma_e A \mathbf{S} - \omega_0^2\mathbf{V} - \Gamma\mathbf{W},
\frac{\mathrm{d}\mathbf{V}}{\mathrm{d}t} &= \mathbf{W}, \\
\frac{\mathrm{d}\mathbf{W}}{\mathrm{d}t} &= \gamma_e A \mathbf{S} - \omega_0^2\mathbf{V} - \Gamma\mathbf{W},
\end{align}
```
where ``A``, ``\omega_0``, and ``\Gamma`` parametrise the Lorentzian spectral density as
```math
Expand Down Expand Up @@ -60,8 +62,8 @@ Note that in these equations above, all quantities have standard units.

SpiDy.jl implements these equations in a unit-free way, following the
conventions of **[NJP 24 033020 (2022)](https://www.doi.org/10.1088/1367-2630/ac4ef2)**.
In summary, suppose a spin of length ``\hbar S_0`` is in presence of a magnetic
field of magnitude ``B_0``. We define the Larmor frequency
In summary, consider a spin of length ``\hbar S_0`` is in presence of a
reference magnetic field of magnitude ``B_0``. We then define the Larmor frequency
```math
\omega_\mathrm{L} = |\gamma_e| B_0,
```
Expand Down Expand Up @@ -97,10 +99,12 @@ Given these choices of rescaling and adimensionalisation and plugging them in
the equations of motion of the previous section, one finally gets the equations
being solved by SpiDy, that is
```math
\frac{\mathrm{d}\bar{\mathbf{S}}}{\mathrm{d}\bar{t}} =
\begin{align}
\frac{\mathrm{d}\bar{\mathbf{S}}}{\mathrm{d}\bar{t}} &=
\bar{\mathbf{S}}\times\left(\bar{\mathbf{B}}_\mathrm{ext} + \frac{1}{\sqrt{S_0}}\bar{\mathbf{b}} + \bar{\mathbf{V}}\right), \\
\frac{\mathrm{d}\bar{\mathbf{V}}}{\mathrm{d}\bar{t}} = \bar{\mathbf{W}}, \\
\frac{\mathrm{d}\bar{\mathbf{W}}}{\mathrm{d}\bar{t}} = \bar{\alpha}\bar{\mathbf{S}} - \bar{\omega}_0^2\bar{\mathbf{V}} - \bar{\Gamma}\bar{\mathbf{W}},
\frac{\mathrm{d}\bar{\mathbf{V}}}{\mathrm{d}\bar{t}} &= \bar{\mathbf{W}}, \\
\frac{\mathrm{d}\bar{\mathbf{W}}}{\mathrm{d}\bar{t}} &= \bar{\alpha}\bar{\mathbf{S}} - \bar{\omega}_0^2\bar{\mathbf{V}} - \bar{\Gamma}\bar{\mathbf{W}},
\end{align}
```
with environment Lorentzian spectral density
```math
Expand All @@ -119,8 +123,8 @@ while for "classical" noise we have
\bar{N}_\mathrm{cl}(\bar{\omega}) = \frac{2\bar{T}}{\bar{\omega}}.
```

Finally, note that these definitions above, the unit-free Gilbert damping is
given by (see [NJP 24 033020 (2022)](https://www.doi.org/10.1088/1367-2630/ac4ef2))
Finally, note that with these definitions above, the unit-free Gilbert damping
is given by (see [NJP 24 033020 (2022)](https://www.doi.org/10.1088/1367-2630/ac4ef2))
```math
\eta = \frac{\bar{\alpha}\bar{\Gamma}}{\bar{\omega}_0^4}.
```
Expand Down

0 comments on commit b8eac5d

Please sign in to comment.