-
Notifications
You must be signed in to change notification settings - Fork 82
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ffc37a3
commit a479118
Showing
2 changed files
with
490 additions
and
0 deletions.
There are no files selected for viewing
165 changes: 165 additions & 0 deletions
165
ods_ci/tests/Resources/Files/pipeline-samples/v2/metrics/random_metrics_visualization.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
# Copyright 2021 The Kubeflow Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import os | ||
|
||
from kfp import dsl, compiler | ||
from kfp.dsl import (component, Output, ClassificationMetrics, Metrics, HTML, | ||
Markdown) | ||
|
||
# In tests, we install a KFP package from the PR under test. Users should not | ||
# normally need to specify `kfp_package_path` in their component definitions. | ||
_KFP_PACKAGE_PATH = os.getenv('KFP_PACKAGE_PATH') | ||
|
||
|
||
@component( | ||
packages_to_install=['scikit-learn'], | ||
base_image='registry.redhat.io/ubi8/python-39@sha256:3523b184212e1f2243e76d8094ab52b01ea3015471471290d011625e1763af61', | ||
kfp_package_path=_KFP_PACKAGE_PATH, | ||
) | ||
def digit_classification(metrics: Output[Metrics]): | ||
import random | ||
from sklearn import model_selection | ||
from sklearn.linear_model import LogisticRegression | ||
from sklearn import datasets | ||
from sklearn.metrics import accuracy_score | ||
|
||
# Load digits dataset | ||
iris = datasets.load_iris() | ||
|
||
# # Create feature matrix | ||
X = iris.data | ||
|
||
# Create target vector | ||
y = iris.target | ||
|
||
#test size | ||
test_size = 0.33 | ||
|
||
seed = 7 | ||
#cross-validation settings | ||
kfold = model_selection.KFold(n_splits=10, random_state=seed, shuffle=True) | ||
|
||
#Model instance | ||
model = LogisticRegression() | ||
scoring = 'accuracy' | ||
results = model_selection.cross_val_score( | ||
model, X, y, cv=kfold, scoring=scoring) | ||
|
||
#split data | ||
X_train, X_test, y_train, y_test = model_selection.train_test_split( | ||
X, y, test_size=test_size, random_state=seed) | ||
#fit model | ||
model.fit(X_train, y_train) | ||
|
||
#accuracy on test set | ||
result = model.score(X_test, y_test) | ||
metrics.log_metric('accuracy', (result * 100.0)) | ||
metrics.log_metric('metric2', random.randint(20, 40)) | ||
metrics.log_metric('metric3', random.randint(20, 40)) | ||
metrics.log_metric('metric4', random.randint(20, 40)) | ||
metrics.log_metric('metric5', random.randint(20, 60)) | ||
metrics.log_metric('metric6', random.randint(200, 300)) | ||
metrics.log_metric('metric7', random.randint(1000, 3000)) | ||
metrics.log_metric('metric8', random.randint(20, 50)) | ||
metrics.log_metric('metric9', random.randint(0, 20)) | ||
metrics.log_metric('metric10', random.randint(20, 30)) | ||
metrics.log_metric('metric11', random.randint(30, 40)) | ||
metrics.log_metric('metric12', random.randint(40, 50)) | ||
|
||
|
||
@component( | ||
packages_to_install=['scikit-learn'], | ||
base_image='python:3.9', | ||
kfp_package_path=_KFP_PACKAGE_PATH, | ||
) | ||
def wine_classification(metrics: Output[ClassificationMetrics]): | ||
from sklearn.ensemble import RandomForestClassifier | ||
from sklearn.metrics import roc_curve | ||
from sklearn.datasets import load_wine | ||
from sklearn.model_selection import train_test_split, cross_val_predict | ||
|
||
X, y = load_wine(return_X_y=True) | ||
# Binary classification problem for label 1. | ||
y = y == 1 | ||
|
||
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) | ||
rfc = RandomForestClassifier(n_estimators=10, random_state=42) | ||
rfc.fit(X_train, y_train) | ||
y_scores = cross_val_predict( | ||
rfc, X_train, y_train, cv=3, method='predict_proba') | ||
y_predict = cross_val_predict(rfc, X_train, y_train, cv=3, method='predict') | ||
fpr, tpr, thresholds = roc_curve( | ||
y_true=y_train, y_score=y_scores[:, 1], pos_label=True) | ||
|
||
# avoid inf thresholds | ||
epsilon = 1e-6 | ||
thresholds = [1 - epsilon if t == float('inf') else t for t in thresholds] | ||
|
||
metrics.log_roc_curve(fpr, tpr, thresholds) | ||
|
||
|
||
@component( | ||
packages_to_install=['scikit-learn'], | ||
base_image='python:3.9', | ||
kfp_package_path=_KFP_PACKAGE_PATH, | ||
) | ||
def iris_sgdclassifier(test_samples_fraction: float, | ||
metrics: Output[ClassificationMetrics]): | ||
from sklearn import datasets, model_selection | ||
from sklearn.linear_model import SGDClassifier | ||
from sklearn.metrics import confusion_matrix | ||
|
||
iris_dataset = datasets.load_iris() | ||
train_x, test_x, train_y, test_y = model_selection.train_test_split( | ||
iris_dataset['data'], | ||
iris_dataset['target'], | ||
test_size=test_samples_fraction) | ||
|
||
classifier = SGDClassifier() | ||
classifier.fit(train_x, train_y) | ||
predictions = model_selection.cross_val_predict( | ||
classifier, train_x, train_y, cv=3) | ||
metrics.log_confusion_matrix( | ||
['Setosa', 'Versicolour', 'Virginica'], | ||
confusion_matrix( | ||
train_y, | ||
predictions).tolist() # .tolist() to convert np array to list. | ||
) | ||
|
||
|
||
@component( | ||
kfp_package_path=_KFP_PACKAGE_PATH,) | ||
def html_visualization(html_artifact: Output[HTML]): | ||
html_content = '<!DOCTYPE html><html><body><h1>Hello world</h1></body></html>' | ||
with open(html_artifact.path, 'w') as f: | ||
f.write(html_content) | ||
|
||
|
||
@component( | ||
kfp_package_path=_KFP_PACKAGE_PATH,) | ||
def markdown_visualization(markdown_artifact: Output[Markdown]): | ||
markdown_content = '## Hello world \n\n Markdown content' | ||
with open(markdown_artifact.path, 'w') as f: | ||
f.write(markdown_content) | ||
|
||
|
||
@dsl.pipeline(name='metrics-visualization-pipeline') | ||
def metrics_visualization_pipeline(): | ||
wine_classification_op = wine_classification() | ||
iris_sgdclassifier_op = iris_sgdclassifier(test_samples_fraction=0.3) | ||
digit_classification_op = digit_classification() | ||
html_visualization_op = html_visualization() | ||
markdown_visualization_op = markdown_visualization() | ||
|
||
compiler.Compiler().compile(pipeline_func=metrics_visualization_pipeline, package_path=__file__.replace(".py", "_compiled.yaml")) |
Oops, something went wrong.