-
Notifications
You must be signed in to change notification settings - Fork 82
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Automation tests for keras grpc model for triton #1843
base: master
Are you sure you want to change the base?
Conversation
...odel_serving/1009__model_serving_triton_on_kserve/1009__model_serving_triton_on_kserve.robot
Fixed
Show fixed
Hide fixed
...odel_serving/1009__model_serving_triton_on_kserve/1009__model_serving_triton_on_kserve.robot
Fixed
Show fixed
Hide fixed
@@ -152,6 +157,51 @@ | |||
... AND | |||
... Delete Serving Runtime Template From CLI displayed_name=triton-kserve-grpc | |||
|
|||
Test KERAS Model Grpc Inference Via UI (Triton on Kserve) # robocop: off=too-long-test-case |
Check warning
Code scanning / Robocop
Test case '{{ test_name }}' has too many keywords inside ({{ keyword_count }}/{{ max_allowed_count }}) Warning test
...odel_serving/1009__model_serving_triton_on_kserve/1009__model_serving_triton_on_kserve.robot
Fixed
Show fixed
Hide fixed
Robot Results
|
@@ -0,0 +1,63 @@ | |||
apiVersion: serving.kserve.io/v1alpha1 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
it seems the same as https://github.com/red-hat-data-services/ods-ci/pull/1844/files
Can we avoid duplication and use one file?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We are adding this file because to test it on local without those files we cannot test them , once the all PR's are approved we remove the all the duplicate files
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Then you could use the same filename everytime, so once a PR gets merged you'd just need a rebase. Instead as it is now, you'll need to change all the references to the files in the tests
... aws_access_key=${S3.AWS_ACCESS_KEY_ID} aws_secret_access=${S3.AWS_SECRET_ACCESS_KEY} | ||
... aws_bucket_name=ods-ci-s3 | ||
Deploy Kserve Model Via UI model_name=${KERAS_MODEL_NAME} serving_runtime=triton-keras-grpc | ||
... data_connection=model-serving-connection path=tritonkeras/model_repository/ model_framework=tensorflow - 2 |
Check warning
Code scanning / Robocop
Line is too long ({{ line_length }}/{{ allowed_length }}) Warning test
7fd438d
to
3371fb8
Compare
... token=${TRUE} | ||
Wait For Pods To Be Ready label_selector=serving.kserve.io/inferenceservice=${KERAS_MODEL_NAME} | ||
... namespace=${PRJ_TITLE} | ||
${EXPECTED_INFERENCE_GRPC_OUTPUT_KERAS}= Load Json File file_path=${EXPECTED_INFERENCE_GRPC_OUTPUT_FILE_KERAS} |
Check warning
Code scanning / Robocop
Line is too long ({{ line_length }}/{{ allowed_length }}) Warning test
Verified with Jenkins Build 554 |
Quality Gate passedIssues Measures |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I'm not a fan of the way files are not-shared between multiple PRs, but I'm not strictly opposed. Just don't forget to tidy it all up!
@@ -0,0 +1 @@ | |||
{"outputs":[{"shape":["1","1000"],"parameters":{},"name":"output_0","datatype":"FP32","contents":null}],"raw_output_contents":["AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=="],"parameters":{},"model_name":"resnet50","model_version":"1","id":"test1"} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is this output is correct it seems it is just repeating character?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There's that /
in the middle. What's the model to do, actually?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes it was tested manually and verified
@@ -0,0 +1 @@ | |||
{"id":"test1","model_name":"resnet50","model_version":"1","inputs":[{"name":"keras_tensor","datatype":"FP32","shape":[1,224,224,3]}],"outputs":[{"name":"output_0"}],"raw_input_contents":["/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxISEhUTExMWFhUXGRUXFhgYGBcXGBgYFRgXFxcZFxgaHSggGBolGxgYITEhJSkrLi4uGB8zODMtNygtLisBCgoKDg0OGhAQGy0lHyUtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAMIBAwMBIgACEQEDEQH/xAAcAAABBQEBAQAAAAAAAAAAAAAFAAEDBAYCBwj/xABCEAABAwIDBQUGBQEHAwUBAAABAAIRAyEEMUEFElFhcQaBkaHwEyIyscHRB0JS4fGCFBUjYnKSsjNzoiQlNFPCFv/EABkBAAMBAQEAAAAAAAAAAAAAAAABAgMEBf/EACYRAAICAgIBBQADAQEAAAAAAAABAhEDMRIhBBMyQVFhIkJxIxT/2gAMAwEAAhEDEQA/APSUkkl6JxCSSToAZR4iu1jXPeQ1rQXOJyAFySpCeK8r2p25biKjmAkUg7dY39UZOPGTcDS2qzyZOCsvHj5ujXt7Vb8GnTO6ci6ZI4xoiuF2vTeJJ3TqD9DwWBwuL3sp+RtortCud7dnmJC81eXkTs9J+Jjao2n97UP/ALAegJ+ihxm26TGbzffOQABHiSLBZp1dpnQ+vFd4VhJEwBN5Q/OyfSEvBx/bLL9u1XXDgOQA+xKnwfaGpMPaHDQ/D9/khVWiBcZaQVTiHZnxlYryMl3yN34+JquJsm7bYI3xuzqDvDvgSPBE6bw4Aggg3BGRWENcZW7xJ8wrWDxZaPdeWjgCAJ6Lpx+bJe/s5sngxfs6NkkgbdpvgEOnqAp6W2P1DvH2K6I+Zif4c0vDyLXYVSUWHxLX/CZ4jUdQpV1Jpq0czTTpjJJ1DUxdNub2jvQ5JbBRb0iVJVxj6R/OFKys12TgehCSnF6Y3CS2jtJJJUSJJJJMBJJJIASSSSBDJJ0kDGSTpIA6SSSUjEkkkgAX2nxXs8JXfMRTfB57phfPuxaG9VbaQIJ6L2n8S6h/shYwgPqFrBOgJ98j+mfFYXA7KZRYAB72pOZK4/KmlSOzxcbl2FsNAB+c9c1M6mON/pfIqnhTJIOVvXrmrxj6fsvMZ6iJWUJudBouqlQtOUxpx71XoYu9z65K+6kHjzUtUNMgONkAQPqO9V8QSY5ld4xwZADZJ0Qt1V8xME5fvwTTCixWe4aidJHyXbca1nxmeA4/sqbn1JgEakzpCrVcDvGXEk8c46ck6+xX9Bt203G+kWVvDYwjW/PQcUDpsIHHn91YpVvdieo4DkoaLQewuNJMyRNgRZX/AO11okVCR64rP068cAOgNlcwlaTnaNbT3JqclpkShF7RaqYioc3E9TKgurLgOULkN0GihtvZaSWiFp0UjZ0zSdT5qRth6CQyahjajYgnoboph9rA2cOpF/JB89VE8EG3kujF5OSGmYZfHxz2jXNcCJGS6QDY+04O47LQ8J4o+vZw5lljaPGzYXilTGSTpLUyGSTpIAZJJJACSSSQB0knSSGJMnSQB5t212hOP9k/4WUmFo/1lxcetgO5C61UEi9vC4Vf8WcaG7RpAN+CkzePHec8gdw+aGOxsgxw4HunxXl+TG5tnqeNKoUaXDs1z6KxUsEKwFY7uZRGrUdF79LH7Llao607Idyc0Z2a4bpB7s/BDaRkWUzqrmMOXDPj9eSQ2Xa7QTlMiOkcfFDMRSBBEZH5/Jd08Zvy2PhzuTY8JC4pvzkCTz06KeNMd9FbA1Je4G1hGWU/urhod/n9FFs9vvPcBaBHi4/bxVkgcweVv2UyfZS0dNwc/wAqpXpFptHzVym8kxqu6lMEQc+SVjB9OoZ979o6gK7RayM47z9lC5pbOUetVzSJH5bePmmII0bZEnvU9N8DX13oZh4mAS2USboEhDuM3+nDvTMdFpPeCpiQLHXL9uKYO/lOgs6a/oQo3v1EdIUgdP7JGn180qHZUYbzr91o9k46fcdnoeI4IQWCZHP6pUmnSy2w5XjlaMc2JZI0zVpKps7Fb7b/ABCx+hVte7CanFSR4c4OMnFiSSSVEjJJ0yAEkkkgDtJOmSGJJOkkB4V+LwjaLjxp0T5EW8D5oNslxcWzq7dPSB67ltvxww/vYZ8CSKrSdTBYWg+LvErC9nxNSJNg5xjoG/VcOdds7sD0a/D0ssxvHiDoePIBX6gOZEyRl9lUoNiY/KTHcBMg+rq42YHda+q4ZHoRO6Fi2OV+mcjuUHaBu+xrGkgkuGZEc1ew1LUqlt6AWwYInz9FSn2Nq0R4HDDDtABBBF8yTln3qCvUc50DnF9BnJ8u8KrQqOuTn64q/gmEw4+6NBwbeO85oe7GvoKbObusFhczzk+sldLW8/IqJrAWgcD4+oXVUGCsmWgfisQGS65HSybDYgP3Xz8UgCRHdCnqkEQ4TePFUzs4jd3QIEX+sZJ9AXcQ10Rbkb+agDy4XItqFLvFsyJb6y+yje1oIItPX7pAd4M24xade/ir1SplleY/hUcId1xyk9evorqs8OM6d8CM7ZpoTJnVRqfmVaw97BU8NSbrlcgfwrTjb3ZEcExFvfjr8lwyoSdY46TwzVTcJMnP1Eq+1wA+EeaAGez9v4XbARzXdOo0jzzTgAiZ1QKyzs2qQ8Trbxy80cWUdVLS0g5GfBamm8OAIyIB8V6ngzuLieb50KkpHSSSS7zgEkkkgYySdJAHaSZOpGJJJJAHnf410gcLRdqK0dzmPn5BefdnMLbf6g6WceXDclHfxj2r7TFsoA2ot94T+epczzDd3/cUP7P0opgyYsNRqTmP9Wq4fJffR3eNEN084veRnIPqFcpu9fwqNKI1kSc+hOZ5q1QdBznjb7LhZ3oJYFwy5IX2jfu1ATdu6D3idVbpPjXh3oT+Ilf2dDfFifcHf9YB70oq2EnSsp0qoqS/Mb+43gSMzOoGXUI+x4cxpGf2sgTKW5h6bAJFMMB45e8fEq/gqwLZvwSZUdBem6RnorNMSIP8qjhGgZ6+H8q9SqFZMsq1qcjKNea6bVMDz5qWqZOZB62Q3G7RpYcj2zw0HLmfPghdg3WwhPET5R4LlzW6iBfTzn6rP0O1DHvLaFN7/wDMTuMA4k5x3K3VxT33Nog+7N73znTmq4tbJUk9FmpXgtDTOUniDa3eumscLjIiDxPAjnp3KjjDeAYF+4iSO4z5K9Sq8ZIsQBwy+pTAno0y3X3c4me+ERpOaBme/wC2fBUd/gLXvN1IyeU/PkkIutLBeJ7vunDryR8o7lVLiR9rR4KWmTAkX6oAtyM580mk5wNMvpOarlpj14pnVov66JkndTOJ6c4R7Ydaae7+n5G/3WYbieORyyRns/V9/dtdvy/ldHiT45V+mPlQ5Yn+B9JOmXsnjilJckLpACSSSQB0HTdKV53S7Q1QwNaYAFiq1btDiLDfuVz/APoib+iz0wPHFPK8pGPrudIe4E53RzYj61ffbUc40AD7QyRMg+7vCPmoflxStoqPjyk6R5v+IOLp18dUq0B7pgEiTvFg3XVOQMAdADqruy5LBcjLKIzsMjOqF1KDmsqOuC4QRwZIIb5AnoESwLDu/GchkAMu7qubJLl2dWJU6CdCeOd7x9I0Ct0nEZ9x581RoU3DJ141A5cIVqk85Hu1B18eq52dSZYpl1Sq2m0e8QXRy4+Tlk/xNxdRtX+yvghm68OiJlpF/E+CJ4HarhtOiwNgtLmuOphr46e6ZQv8WWf+vnjSpnxL1UFU1/hnklcH/of2VtOlXoNc2J3Q17eDmi9lNggWmBkeXjB4Ly7C1n0zvMc5p4gx/KIO2/i4j2zrcm/ZDw/Qo+Qq7R6zh2g2NksRjqNEe/Ua0cXODV5bgsbjcQQxtaof6t0CdSRCJ7N2UxjyXy94tvG95OhvoL81nLEltmkcrlpGvxe1XVAfYWJtvubIjiGZk9YHVBH9n6b379Z9Sq8x8Tt0dBugQOQIVwG0x6ElSUqk20sYSTa0W0nskoYemwBjGADQCQJvcTrzUxaCDI66/wAH11kw8EW09EKcUwQekZqbKKeIIsYBEQT1/hXcG0aDNDKxDg1wyN/9wBP/AJHzKuYYkRb9uqTAv5GPop3hug+foKu0gnPzUpfaM/RQBNScut8jUeP2VbeHTkuTXtKBUWXVeMfKFUr4gSePM2y14KF9d3Hp6iypVa8m8DoLCTEnkmFBChAB/eeeef8ACOdnTNUDg1x+Q+qzGHLuJBGl+eqLYXbLMPLnG5AHONfNa4EvUTZlnf8AzZukkL2HtRtdgO8JM21RRe2mmrR4rVDJJ0yYhJJJIA8mtv7tzCle9u8Mp0TOptptNTV3zVCmN/KSvJR6Id2fgG1qjWOeKbblziQIAuc9dO9XdvbXptp+ww3u0RYu1ecj3QM9brP1MQWw2BJC6aN4C172UtJvspOgVtbDt9jUcD+UnwuqeA+CS4zug6DS2iK7TH+DUBbmx0W5FBdi1Pc90AZflP19XT+AhsNMAtc+X2UhaTr/AFcOE8l3gt8aNNv8uueeaes5jSwWlxgTEGBNyDfoszoM9smg+rtaGAFwe4gE2O42CJ4GCq/4j19/HOGXs2U6ZGcEAuIP+5afsi2nhMa7FGXOitA0JfZo5CTnwbzQbbmymn2uKjffvOq1A67XBxJcBwgXHSFSa5J/hm4vi1+mNZRJyGeunijuA2Kw/G/eIj3WmAZgj3s+P3RXG0WexDgN6k4b3Qa/z/Kgr4R1PcqMJcyQb/lmB7w0Fhf0a52JY+J0xow9QbtmOsBB919oaTwJtdWt+alQi53hGV5Fx5IXja+6AJMXa4HNrXfA4cYcG30touNlY0kifzMZJnIj3fpPepcerLUu6NJvDd7+4jX5pUSW5Z8uHqU1BhLYAyvxMfPw4qanRda0ZTzvwtxWJsWaVT1l06ohhyTDevr5IbSG7JvrOcd0IjhX3E5+vqVLKA+9DIz3Xub3G4B5AHyKv0KgtbkfrPNDHVQC8WiXuvb4S6JPeuaWIdugwbamBfWNVfBsjkkHqREG2Vz0VD+/qLid1ziA4MMNmCcieAm08QUMr7X3pYA5pn3pNjlcHXPyV+h2dokB4LmuzJY4tnXTmr9OK9xDnJ6Ja226bAS8GAYnnu7/AB4fJS7N2pSrhzqTpjOxBGosRfu4LGdpcFTZVAaSbX3iXRpmVP2TrObUeGiZZJ/pIv5pvEnG0Ssr5UzYVa8m47+KrUqmpB5xces1DVqudDSI1mfC8hXMHhi4QHM5SSczyBAtzWXFm3JD0qQAGekZZZ56jqh2NLajzf4YHKyLYhhZZ1t0E52y0QQtAmfzXvzVY09mOeXVBbZDwx7XNO7z+i3B2yGtBdkdV5lTqNkNE2V2rjnEbrne7oOC7MWVwRxzxqR6hQxbHZOE9VLUqBok5BeY4XGGndszqiztv1KlBwaYcbcgNSumGdSMJYmjWf3tR/WPFOsBQ2PSLRvVr631SR6svwfpIq4zCe0sSY4aJYTBCm3dk35KzIK6FSF5fJnZ0VMVhd4gg5CF3SokXkK2HJCoE+TCkVcXh/aNdMTukeIhYPY9YAFrnQRY2Fo79F6PvDgF55tmg7D4l4BhrzvstIO8bjPQ/RXGV9C07NLgXstLrzo0H5qUYBzq4rF0NYIpttJn4nHQTJ8AhuysW7dEu8o+pPkjVKtAk+v3UPo6FTKrW3nW/eiVLCipTfTOT2ub3uBEdFSo/vy5ojgasOWdmzXRjsCXUqdKhUEAiOj4MjvkiDwVzsziQHOw7jdpgZXBFrHWI80W2psVlYXBDp3mkHJ14Mai6xu0NlYulW9oKTiLXZ70wOVxlw4LZVI5FNxCnbrYRpMbVYDub0EZhpcNP0gxkLTCy+yqxD2weXn+5Wz2p2lZUwT6NYObWIHuuF5DgQfAZ8lgqT4dI0utIJ8aZM2uVo9Ho1LNz3uBAM6x9e5XqLQSIGhtnnwzshWzqoewF1+dvsjVNgAm9lySO2LJm04N9dOHrooMJiAKlScmRJta28e6IU+GbJuc5jXLNAtotc99Sg2Ze/eeRoxrQ2O8wPFEY8nQpS4qxtmUxWlzmEyTuXy13nN56TyRvD9mXky5x5AZD7hS7LwDQ9oiwFsxlzlarAsuSInLkeZ5rZv6MUvswR2MKbyC62fGYmQPWilrYwg7k7rQIyIndsTfLVbHEYUS55aDEm/L0FkcXhjiIduxO8I7zfvlS3eykjC4/EGpVc7Qm3QWCt9mnRiqXAkg94PruQ+vTLHuadCR4FXOzwnFUP8AuN+a6Ho5v7HobtnNIJbPMc9SB00VQbNgyIHA/VHWUvNR4rCixC5U2droGVMLvDdcSeBkqhidjVACfjbqB8Q5xr3LVUMLMSPuidChxHRUmzOUUzyaqWsdLO8p8O9+9unOxBWh7c7D9m4V6YifjGnIjr9uKCYT375QD4rbpqzlcadF2lXh0EyTbkpn40Bu6AJNkNALRIuYm/FVxiHHMAEZI0ILCi7ikmZiDASU8goK7w4JABRNqnJSCqsirR02OqRhcOqpxUCB/wATpoaVR2vseliGbj5n8rhm08vsrchOhdB0ZbB9ma1I+7UY5s6gtPlMrvD4lxe5jolji3lbXvzWpBHFZPEjcxrxMh+68cpAB8wVVuWy4OmajZ2E3ptxTNpQYygonsQz4fMKvixFUhZS0dUX2RJSndmmIvmqONrsE9o9hsxLODwPcdz4HiF5hVw76b914LXDQ+C9lKG7W2LSxH/UAkAw4WcO/PuyutIZK6ZLjZnuy1YOABOQj7arTPBaZzymJ8lhNgyys6mbQSD1aYyK2jchE8uEd+SnIqZ04ncS78PvZEXA4jW3FU9ku3sVWfYg7o8gbcbnJXTpIuBn87aiVT7PMBqPdoajj5lo+SWP5KyfAR2pWNJvtC4ACxgXN8ozPRXuz+2TVYHtDiDIuIKW08GHMMgG4ju1UGHxgpgNLTA1trqr6ozphYVzBkkyTA439eCD7KqtLb/EC4EHQybfNWTiGk78iG53iIv91kMBjvaNdXbcGtVBjSX7zfFrh4Ka6H8k3bXZW9/jMAkD3+YGRGki64/DnY4qVRXdlTcNy/5wLhw4QQUWquNWk/d+IC2l492epsrmyK4Y1rRmB/5fb7KubUaFwTlZoKwLXE8+6VUq1Tbn6+UqP2hc4kk8p9XUOMqwBxkeUH6FZmhbwuI4c79/ii9F4tHVZDZ1cXzAzHz+60OHrCBH1TBoftLR38O9usSO4g/RYVuCIbAMc16Jvbx3dNVj6jN0kHQkeFk7MMi+QPhNnuaDLt6ddVyzZMuc6TJ8EY3IykJb4Gp8EcmZUBf7DVTo2Kn+byTJWPohgcEt0aAqzA4rlzeaQUVjTvKcxwU8JCUAVoXYUs8kj0QIh3eBQHtFTIq0Xcd5p46OHdYrSAjghPacf4BcM2FrvOD5Eqo7Gtl/Y+NLQrNSvvHeQTZTt5gNpAvylE2CM8lnI7o/ZKXJ95ckCUuhTRxS2xbyYuKeUt5Mkw226fssbvAfHDh1I3T5jzWrwB3gDJ1tb5oR23w0sZV/Q6D0d+4Hip9hYoOZc3txIPP1CqfcUzfA+6C9Q7vOGk87R+ZQ9ngBSY6+9AJ58SuMUX3aY4R14Hhdddmnj2GRBEt1MEGDmEoaZpPaCW0tvtpiHXeQIb9eiHO2qyjS33kvfDnuaACRrcn4R6hR1dkTXfVc4neAG7EQOvWT3ql2m3WUNxogvLWjxkq1V0YSm0Z/bvaatiRuACnT/S25McXa+SLbBoPwpqUanvNduukGLxEgEfPgIRPY3Y6lUd7ZrppiIY7MPgZ8ROXUIf2zbXbWZRa2XObLXC1pIIN7Ruq20/4oEmlyYaq4c0nteDLX2N+RjlFzzurWGYRNsiZiJ5rH7N7TE0vZVdAN13TLrZa3YGJDmTOf1PNRKNGkJWGcKLgk+PBVtrMs0fqJHkfulvlpEznrz+q7xBLnNEyBOfP+Fka0cYPDXnp3AIrhmxOXKLKlTpxYD1xVum6BJySsGSsqboJEmT4c0ExYG+7iST43RZjpHI/VBtomKrhzHmAqTMsnSOVy26jdVSNUJmPJE9uaZRCqkkLkhiL9E+6DeVGwh0Cf5zPyXG+Js4dINu9TZFk+6OOSjqVY1TUn3Im321C7JExNrz80WFjNfN5F05J5Lkuz8UiRJFifPw0RYWOSeChxzQ6k9pFi1wPgrDqkG5j0Vxii4scBBO6eOoMJpj6M72VefZtF736nktS24iZMeCB9jsNu096bkDuAuAB3rS06LA3SU8mztxPoqOqAeSZtduoUtdvfFufq5UDmicukqUzlydSZ17Vqf2jUwDRouTuc+l0WRZS7QUw/DVWgX3SR1b730We2K8tjKIbH78eo4rWvptII4yPGyxWz6TqVR1KZLHEAF26S38pE2dY5EarRdpo0xupGtrOLg2I4fwdQqOHq/wBmquLhFOobn9NTnwDsweqtYYF14IiLGBa+otPRWnsD2ljh7pEEZz1nNQnxOqS5Ilq45rhIiR580C2iDVe0mzW6WM5E/JTP2Q5gO5U90aPEwBwdqFP2ewZxEOePd0HHqfotU0uzn9zDPZekd0uuN42HECwPzTduMO1rfattVFGo0H/Kcrf6pWjp0g3diwA7v2WR7TYn2zi0ZOIA/wBLSMu+PFTfdly0ogTBbCZVw+4RFpB1BjMLvsk8z7J2bbGOIJC0Oz6O6IWbo1DSx9RskAmbTJ3v3RB3aKmqpmxNOPikAc5gyOXVPu3mb5+QUWIr+4TAAALotcgSsPgO226AajSc5iNYiL8Jt0S4N6G5pbPQKRU1Zxjl6j6rMbL7cUarhTFJxccrcMyTp3rS0sU2o33DcWIyIPr5pcHHYKalo6oWjlY+PNDNqsHtXTy/4hXK7y0e7eJnpy5wqW0DLgTq1v2QiMq6KxY3Rc+zUgATWyTOeiN1MJLrcCdFBxMY3tIZB3SON5nu4813/wD08zLLTkDlqguKwe7ugQfdac9TnCjq4Ko0ElthnlnY/ULo9OBlbNNT7UsDhDCGgZ/mnx5rql2mpzJDuVh53usg5h1C5IhHpQC2bj+/2kCH/FmJiMlbo45pMh7JI0cJOVoXnzGEmPXJIggwc1Dwx+AtnoTXsuWkB2olt+vMKz7OZaSMuMWiI/fkvNA88T4qeliah90ON4AEzraO/gl6P6CZp+zdRzW/C+2RLwBH+4WWso4sFsQB3yeqzOz8I3dA3QDGgI85lGcJTLT5euayn2z0YJpE+JIiecfM6qA1HEkSCDJ6dR6yVbb2NdSoOezNrm71spt3ZhCKe1cQGh3s99hk/wCHeBlB3cvXBCg32c2Z/wAjQONg75W6euacXAkTa+hsJm6oUceXUzALnFocadt5o/LNrCxUNPaAADHkNeLOBnO0204JcGY9Bakd20+M5G48ln+0sseK7ASJDKjcxB+E9Qbd4RcYlhkNInK+UgcfBdu3ajHN3WbpaQbQbiM+KF0xrp9HGx8UxzRDHN/1DcHM5X7la9rDrkRnwjhA+6x2wq7wDYkDIuD3WBieC0uHxG+3nnneeXyTlGmd0JWifHmf8MH/AKh3egOeXKVp9l7Pa1rSFk8NXLsQAQDus6mXTJ00A8VtcI4CmHHr3C+qpdIzUabZW25jwxu4M3Z8m/usbhKzqj3Pj3RugX0BJ88/BSbTxXtyQ34nTvSZgZBvAGLK1hsPDRo4CxvlYQRqMrctFIQTb5BSjXBA04rJ7aaBj2n9TG/MiUcqPIIbADgADlB6deH8oPj2+0xbTIsz65X1zz6aox9SNMntNG5s0y0nNhHO4I+qC1+wtAUt4vqaZxGYBFh5ytBRuwGL3m3d66KztWpu0GjOSMuET80+TWjOaVdgChhaLCSxjWnIkNAy6KDauJdSDa1O5YYeP1UzZw7s+5djENNnCNLCczck6KV7WD4hOh6FSm77OZN7INlbX9tJBnTu4xpbwKL4ltmD/LHgf3WRw+FbQxILbU6gkDgQbj5W/wAwWvxNMmm0g3abHiO7oqkku0b8uUCqWRdMBKrscJs4SfFTB2tuGWamzHkd7hSScZ4eJCSXMORQ2pQYW0yWtJ3syAT8IQHbwhzyLEFsR0b90klpjMyjsYTWaDcc7/lKMuYN+mYHwsOWpDST1MlJJXk2JA/GtAqWtb7oLiQN53UfRJJXACLFNANhoPkimAptmgYEkOmwvB1SSVPRUfcjY4fMnWR/xUtcxvRy+YTpLm+Tv+CPbY9x3MtnnLmi/csfjmgYgNAhu68wMpmpeO4eCSS0xaOfPtF7C4l5qVzvukNqEXNoe8CPAeCzNU+8ervmUklrHZhItmq6JkzGclTYfEPh3vOyOp5pJJPRAQwoh0Cw325WzJHyRnAfIW5ZJJLGR6EC5sloOIfP6v8A8NWg2u4jB1Y/Q/5JJIJlpmd2a0ezYYvB+bUWqC3riUkli9m8QbiDJP8AV5RCFtP/ALhRGhaQRoR7xg8QkktIbM8mjYgRuAWE5aKHbHwtGkO/4hJJT8E5PawJsdxLb3yzvqFK8Q4gWsfKEklHyzhBu2D71L/vH/i/7BarZ3/x/wCh3ySSW39UdOLTBDgIP9Sqlx3wJMb0RpmxJJJHOPiqhDjc6a8gkkkkSf/Z"]} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Quality Gate passedIssues Measures |
Add support for trition server for keras model format using kserve using gRPC endpoint RHOAIENG-11563