我們介紹的paper"CNN-RNN: A Unified Framework for Multi-label Image Classification" Baidu Reasch in China發表在CVPR2016
組員:賴筱婷,鄭乃嘉,周育潤,翁慶年
負責部份:
Introduction:賴筱婷
Proposed Method:翁慶年
Experiment and Conclusion:周育潤,鄭乃嘉
本篇論文主要想解決multi-label classification的問題,利用RNN(LSTM)的特性去model label co-occurrence dependency.
- Sumit Chopra from Facebook. Reasoning, Attention and Memory slides
- Edward Grefenstette from Google DeepMind. Beyond Seq2Seq with Augmented RNNs slides
- [+10] Please find a recent paper (2014-2015) which introduced a NN with memory.
- [+50] Write a report to briefly introduce the paper;
- [+40] then, focus on discussing the unique properties of the new NN and where it can be applied to take advantage of the properties.
- Search RNN on Arxiv-sanity link
- Jianpeng Cheng et al. Long Short-Term Memory-Networks for Machine Reading. arXiv16’.
- Nal Kalchbrenner et al. Grid Long Short-Term Memory. arXiv16’. (From DeepMind, Alex)
- Kaisheng Yao et al. Depth-Gated LSTM. arXiv15’.
- Shuohang Wang et al. Learning Natural Language Inference with LSTM. arXiv15’.
- Junyoung Chung et al. Gated Feedback Recurrent Neural Networks. arXiv15’.
- Due on Oct. 3rd before class.