Skip to content

Commit

Permalink
Deployed e7940dc to dev with MkDocs 1.6.1 and mike 2.1.3
Browse files Browse the repository at this point in the history
  • Loading branch information
github-actions[bot] committed Dec 21, 2024
1 parent af2e874 commit 5f8f847
Show file tree
Hide file tree
Showing 9 changed files with 150 additions and 105 deletions.
24 changes: 12 additions & 12 deletions dev/reference/models/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -2305,17 +2305,17 @@ <h2 id="sbi.neural_nets.estimators.ConditionalDensityEstimator" class="doc doc-h


<p>Base class for density estimators.</p>
<p>The density estimator class is a wrapper around neural networks that
allows to evaluate the <code>log_prob</code>, <code>sample</code>, and provide the <code>loss</code> of <span class="arithmatex">\(\theta,x\)</span>
pairs. Here <span class="arithmatex">\(\theta\)</span> would be the <code>input</code> and <span class="arithmatex">\(x\)</span> would be the <code>condition</code>.</p>
<p>The density estimator class is a wrapper around neural networks that allows to
evaluate the <code>log_prob</code>, <code>sample</code>, and provide the <code>loss</code> of <span class="arithmatex">\(\theta,x\)</span> pairs. Here
<span class="arithmatex">\(\theta\)</span> would be the <code>input</code> and <span class="arithmatex">\(x\)</span> would be the <code>condition</code>.</p>


<details class="note" open>
<summary>Note</summary>
<p>We assume that the input to the density estimator is a tensor of shape
(batch_size, input_size), where input_size is the dimensionality of the input.
The condition is a tensor of shape (batch_size, *condition_shape), where
condition_shape is the shape of the condition tensor.</p>
(sample_dim, batch_dim, *input_shape), where input_shape is the dimensionality
of the input. The condition is a tensor of shape (batch_size, *condition_shape),
where condition_shape is the shape of the condition tensor.</p>
</details>


Expand Down Expand Up @@ -2431,15 +2431,15 @@ <h2 id="sbi.neural_nets.estimators.ConditionalDensityEstimator" class="doc doc-h
<span class="normal">223</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">class</span> <span class="nc">ConditionalDensityEstimator</span><span class="p">(</span><span class="n">ConditionalEstimator</span><span class="p">):</span>
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;Base class for density estimators.</span>

<span class="sd"> The density estimator class is a wrapper around neural networks that</span>
<span class="sd"> allows to evaluate the `log_prob`, `sample`, and provide the `loss` of $\theta,x$</span>
<span class="sd"> pairs. Here $\theta$ would be the `input` and $x$ would be the `condition`.</span>
<span class="sd"> The density estimator class is a wrapper around neural networks that allows to</span>
<span class="sd"> evaluate the `log_prob`, `sample`, and provide the `loss` of $\theta,x$ pairs. Here</span>
<span class="sd"> $\theta$ would be the `input` and $x$ would be the `condition`.</span>

<span class="sd"> Note:</span>
<span class="sd"> We assume that the input to the density estimator is a tensor of shape</span>
<span class="sd"> (batch_size, input_size), where input_size is the dimensionality of the input.</span>
<span class="sd"> The condition is a tensor of shape (batch_size, *condition_shape), where</span>
<span class="sd"> condition_shape is the shape of the condition tensor.</span>
<span class="sd"> (sample_dim, batch_dim, *input_shape), where input_shape is the dimensionality</span>
<span class="sd"> of the input. The condition is a tensor of shape (batch_size, *condition_shape),</span>
<span class="sd"> where condition_shape is the shape of the condition tensor.</span>

<span class="sd"> &quot;&quot;&quot;</span>

Expand Down
6 changes: 3 additions & 3 deletions dev/reference/potentials/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -856,8 +856,7 @@ <h2 id="sbi.inference.potentials.likelihood_based_potential.likelihood_estimator

<details class="quote">
<summary>Source code in <code>sbi/inference/potentials/likelihood_based_potential.py</code></summary>
<div class="codehilite"><table class="codehilitetable"><tr><td class="linenos"><div class="linenodiv"><pre><span></span><span class="normal">23</span>
<span class="normal">24</span>
<div class="codehilite"><table class="codehilitetable"><tr><td class="linenos"><div class="linenodiv"><pre><span></span><span class="normal">24</span>
<span class="normal">25</span>
<span class="normal">26</span>
<span class="normal">27</span>
Expand Down Expand Up @@ -888,7 +887,8 @@ <h2 id="sbi.inference.potentials.likelihood_based_potential.likelihood_estimator
<span class="normal">52</span>
<span class="normal">53</span>
<span class="normal">54</span>
<span class="normal">55</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">def</span> <span class="nf">likelihood_estimator_based_potential</span><span class="p">(</span>
<span class="normal">55</span>
<span class="normal">56</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">def</span> <span class="nf">likelihood_estimator_based_potential</span><span class="p">(</span>
<span class="n">likelihood_estimator</span><span class="p">:</span> <span class="n">ConditionalDensityEstimator</span><span class="p">,</span>
<span class="n">prior</span><span class="p">:</span> <span class="n">Distribution</span><span class="p">,</span>
<span class="n">x_o</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">],</span>
Expand Down
2 changes: 1 addition & 1 deletion dev/search/search_index.json

Large diffs are not rendered by default.

Loading

0 comments on commit 5f8f847

Please sign in to comment.