-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
236 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,236 @@ | ||
import os | ||
import random | ||
from typing import * | ||
|
||
import torch | ||
import torchvision | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
|
||
from argparse import ArgumentParser | ||
from tqdm import tqdm | ||
|
||
import scallopy | ||
|
||
mnist_img_transform = torchvision.transforms.Compose([ | ||
torchvision.transforms.ToTensor(), | ||
torchvision.transforms.Normalize( | ||
(0.1307,), (0.3081,) | ||
) | ||
]) | ||
|
||
class MNISTSum2Dataset(torch.utils.data.Dataset): | ||
def __init__( | ||
self, | ||
root: str, | ||
train: bool = True, | ||
transform: Optional[Callable] = None, | ||
target_transform: Optional[Callable] = None, | ||
download: bool = False, | ||
): | ||
# Contains a MNIST dataset | ||
self.mnist_dataset = torchvision.datasets.MNIST( | ||
root, | ||
train=train, | ||
transform=transform, | ||
target_transform=target_transform, | ||
download=download, | ||
) | ||
self.index_map = list(range(len(self.mnist_dataset))) | ||
random.shuffle(self.index_map) | ||
|
||
def __len__(self): | ||
return int(len(self.mnist_dataset) / 2) | ||
|
||
def __getitem__(self, idx): | ||
# Get two data points | ||
(a_img, a_digit) = self.mnist_dataset[self.index_map[idx * 2]] | ||
(b_img, b_digit) = self.mnist_dataset[self.index_map[idx * 2 + 1]] | ||
|
||
# Each data has two images and the GT is the sum of two digits | ||
return (a_img, b_img, a_digit + b_digit) | ||
|
||
@staticmethod | ||
def collate_fn(batch): | ||
a_imgs = torch.stack([item[0] for item in batch]) | ||
b_imgs = torch.stack([item[1] for item in batch]) | ||
digits = torch.stack([torch.tensor(item[2]).long() for item in batch]) | ||
return ((a_imgs, b_imgs), digits) | ||
|
||
|
||
def mnist_sum_2_loader(data_dir, batch_size_train, batch_size_test): | ||
train_loader = torch.utils.data.DataLoader( | ||
MNISTSum2Dataset( | ||
data_dir, | ||
train=True, | ||
download=True, | ||
transform=mnist_img_transform, | ||
), | ||
collate_fn=MNISTSum2Dataset.collate_fn, | ||
batch_size=batch_size_train, | ||
shuffle=True | ||
) | ||
|
||
test_loader = torch.utils.data.DataLoader( | ||
MNISTSum2Dataset( | ||
data_dir, | ||
train=False, | ||
download=True, | ||
transform=mnist_img_transform, | ||
), | ||
collate_fn=MNISTSum2Dataset.collate_fn, | ||
batch_size=batch_size_test, | ||
shuffle=True | ||
) | ||
|
||
return train_loader, test_loader | ||
|
||
|
||
class MNISTNet(nn.Module): | ||
def __init__(self): | ||
super(MNISTNet, self).__init__() | ||
self.conv1 = nn.Conv2d(1, 32, kernel_size=5) | ||
self.conv2 = nn.Conv2d(32, 64, kernel_size=5) | ||
self.fc1 = nn.Linear(1024, 1024) | ||
self.fc2 = nn.Linear(1024, 10) | ||
|
||
def forward(self, x): | ||
x = F.max_pool2d(self.conv1(x), 2) | ||
x = F.max_pool2d(self.conv2(x), 2) | ||
x = x.view(-1, 1024) | ||
x = F.relu(self.fc1(x)) | ||
x = F.dropout(x, p = 0.5, training=self.training) | ||
x = self.fc2(x) | ||
return F.softmax(x, dim=1) | ||
|
||
|
||
class MNISTSum2Net(nn.Module): | ||
def __init__(self, provenance, k): | ||
super(MNISTSum2Net, self).__init__() | ||
|
||
# MNIST Digit Recognition Network | ||
self.mnist_net = MNISTNet() | ||
|
||
# Scallop Context | ||
self.scl_ctx = scallopy.ScallopContext(provenance="difftopkproofsdebug", k=k) | ||
self.scl_ctx.add_relation("digit_1", int, input_mapping=list(range(10))) | ||
self.scl_ctx.add_relation("digit_2", int, input_mapping=list(range(10))) | ||
self.scl_ctx.add_rule("sum_2(a + b) :- digit_1(a), digit_2(b)") | ||
|
||
# The `sum_2` logical reasoning module | ||
self.sum_2 = self.scl_ctx.forward_function("sum_2", output_mapping=[(i,) for i in range(19)], jit=args.jit, dispatch=args.dispatch) | ||
|
||
def forward(self, x: Tuple[torch.Tensor, torch.Tensor]): | ||
(a_imgs, b_imgs) = x | ||
|
||
# First recognize the two digits | ||
a_distrs = self.mnist_net(a_imgs) # Tensor 64 x 10 | ||
b_distrs = self.mnist_net(b_imgs) # Tensor 64 x 10 | ||
|
||
processed_a_facts = [[((p, i + 1), (i,)) for (i, p) in enumerate(dp)] for dp in a_distrs] | ||
processed_b_facts = [[((p, i + 11), (i,)) for (i, p) in enumerate(dp)] for dp in b_distrs] | ||
|
||
# Then execute the reasoning module; the result is a tuple | ||
(result_tensor, proofs) = self.sum_2(digit_1=processed_a_facts, digit_2=processed_b_facts) | ||
return result_tensor | ||
|
||
|
||
def bce_loss(output, ground_truth): | ||
(_, dim) = output.shape | ||
gt = torch.stack([torch.tensor([1.0 if i == t else 0.0 for i in range(dim)]) for t in ground_truth]) | ||
return F.binary_cross_entropy(output, gt) | ||
|
||
|
||
def nll_loss(output, ground_truth): | ||
return F.nll_loss(output, ground_truth) | ||
|
||
|
||
class Trainer(): | ||
def __init__(self, train_loader, test_loader, model_dir, learning_rate, loss, k, provenance): | ||
self.model_dir = model_dir | ||
self.network = MNISTSum2Net(provenance, k) | ||
self.optimizer = optim.Adam(self.network.parameters(), lr=learning_rate) | ||
self.train_loader = train_loader | ||
self.test_loader = test_loader | ||
self.best_loss = 10000000000 | ||
if loss == "nll": | ||
self.loss = nll_loss | ||
elif loss == "bce": | ||
self.loss = bce_loss | ||
else: | ||
raise Exception(f"Unknown loss function `{loss}`") | ||
|
||
def train_epoch(self, epoch): | ||
self.network.train() | ||
iter = tqdm(self.train_loader, total=len(self.train_loader)) | ||
for (data, target) in iter: | ||
self.optimizer.zero_grad() | ||
output = self.network(data) | ||
loss = self.loss(output, target) | ||
loss.backward() | ||
self.optimizer.step() | ||
iter.set_description(f"[Train Epoch {epoch}] Loss: {loss.item():.4f}") | ||
|
||
def test_epoch(self, epoch): | ||
self.network.eval() | ||
num_items = len(self.test_loader.dataset) | ||
test_loss = 0 | ||
correct = 0 | ||
with torch.no_grad(): | ||
iter = tqdm(self.test_loader, total=len(self.test_loader)) | ||
for (data, target) in iter: | ||
output = self.network(data) | ||
test_loss += self.loss(output, target).item() | ||
pred = output.data.max(1, keepdim=True)[1] | ||
correct += pred.eq(target.data.view_as(pred)).sum() | ||
perc = 100. * correct / num_items | ||
iter.set_description(f"[Test Epoch {epoch}] Total loss: {test_loss:.4f}, Accuracy: {correct}/{num_items} ({perc:.2f}%)") | ||
if test_loss < self.best_loss: | ||
self.best_loss = test_loss | ||
torch.save(self.network, os.path.join(model_dir, "sum_2_best.pt")) | ||
|
||
def train(self, n_epochs): | ||
# self.test_epoch(0) | ||
for epoch in range(1, n_epochs + 1): | ||
self.train_epoch(epoch) | ||
self.test_epoch(epoch) | ||
|
||
|
||
if __name__ == "__main__": | ||
# Argument parser | ||
parser = ArgumentParser("mnist_sum_2") | ||
parser.add_argument("--n-epochs", type=int, default=10) | ||
parser.add_argument("--batch-size-train", type=int, default=64) | ||
parser.add_argument("--batch-size-test", type=int, default=64) | ||
parser.add_argument("--learning-rate", type=float, default=0.001) | ||
parser.add_argument("--loss-fn", type=str, default="bce") | ||
parser.add_argument("--seed", type=int, default=1234) | ||
parser.add_argument("--provenance", type=str, default="difftopkproofs") | ||
parser.add_argument("--top-k", type=int, default=3) | ||
parser.add_argument("--jit", action="store_true") | ||
parser.add_argument("--dispatch", type=str, default="parallel") | ||
args = parser.parse_args() | ||
|
||
# Parameters | ||
n_epochs = args.n_epochs | ||
batch_size_train = args.batch_size_train | ||
batch_size_test = args.batch_size_test | ||
learning_rate = args.learning_rate | ||
loss_fn = args.loss_fn | ||
k = args.top_k | ||
provenance = args.provenance | ||
torch.manual_seed(args.seed) | ||
random.seed(args.seed) | ||
|
||
# Data | ||
data_dir = os.path.abspath(os.path.join(os.path.abspath(__file__), "../../data")) | ||
model_dir = os.path.abspath(os.path.join(os.path.abspath(__file__), "../../model/mnist_sum_2")) | ||
os.makedirs(model_dir, exist_ok=True) | ||
|
||
# Dataloaders | ||
train_loader, test_loader = mnist_sum_2_loader(data_dir, batch_size_train, batch_size_test) | ||
|
||
# Create trainer and train | ||
trainer = Trainer(train_loader, test_loader, model_dir, learning_rate, loss_fn, k, provenance) | ||
trainer.train(n_epochs) |