- Linux or macOS
- Python 3
- CPU or NVIDIA GPU + CUDA CuDNN
- Clone Repo
git clone https://github.com/sejong-rcv/MDII
cd MDII
- Prerequisite
- Option
- visdom port number
nvidia-docker run -it -v $PWD:/workspace -p {port}:8888 -e NVIDIA_VISIBLE_DEVICES=all handchan/mdii /bin/bash
if you have any problem with downloading the docker image, check this repository : https://hub.docker.com/r/handchan/mdii/tags
- Download Dataset
cd MDII
curl http://multispectral.sejong.ac.kr/ICRA2020_MDII/ICRA_MDII.tar.gz -o ICRA_MDII.tar.gz
tar -xzvf ICRA_MDII.tar.gz
- we support the pre-processed dataset.If you want to check the original dataset, refer to the following papers.
- Running train.py
python train.py --name MDII --model MDII_gan --dataroot ./ICRA_MDII --gpu_ids GPU_NUM --no_dropout --no_AA_BB
- Running feat_c.py , make .npz file
### Convert train img to MDII
python feat_c.py --epoch {Epoch} --gpu_ids {GPU_NUM} --name MDII \
--dataroot ./ICRA_MDII --no_dropout --model MDII_gan --phase train --eval
### Convert test img to MDII
python feat_c.py --epoch {Epoch} --gpu_ids {GPU_NUM} --name MDII \
--dataroot ./ICRA_MDII --no_dropout --model MDII_gan --phase test --eval
- Using Matlab vlfeat code. run rank.py
- Download VLFeat (our version is vlfeat-0.9.21)
- Replace {vlfeat dir}/apps/recognition/ to recognition_MDII
- Place your convert result name as {vlfeat dir}/MDII
cd {vlfeat dir} ln -s {result dir} MDII (ex. ../../result/images/ICRA_MDII/{checkpoint name}/{epoch}/) # {vlfeat dir} # ├── apps # │ └── recognition # ├── data # │ ├── MDII -> ../../result/images/ICRA_MDII/{checkpoint name}/{epoch}/ # │ │ ├── test # │ │ │ ├── rgb # │ │ │ ├── thr # │ │ ├── train # │ │ │ ├── rgb # │ │ │ ├── thr # ├── # ...
- Run the Matlab code {vlfeat dir}/apps/recognition/experiments.m
- Run the python code rank.py {workspace/rank.py}
python rank.py --cache_path ./{vlfeat dir}/data_MDII_0604_200epoch/ex-MDII-vlad-aug # You can see the detail in python rank.py --help
@INPROCEEDINGS{ICRA2020,
author = {Daechan Han*, YuJin Hwang*, Namil Kim, Yukyung Choi},
title = {Multispectral Domain Invariant Image for Retrieval-based Place Recognition},
booktitle = {International Conference on Robotics and Automation(ICRA)},
year = {2020}
}