Skip to content

Commit

Permalink
v0.2.0
Browse files Browse the repository at this point in the history
Support different initializers for different embedding weights and loading pretrained embeddings
  • Loading branch information
浅梦 authored Oct 12, 2020
1 parent ea69d9c commit f9f5bb7
Show file tree
Hide file tree
Showing 36 changed files with 293 additions and 194 deletions.
6 changes: 3 additions & 3 deletions .github/ISSUE_TEMPLATE/bug_report.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,9 @@ Steps to reproduce the behavior:
4. See error

**Operating environment(运行环境):**
- python version [e.g. 3.4, 3.6]
- tensorflow version [e.g. 1.4.0, 1.12.0]
- deepmatch version [e.g. 0.1.1,]
- python version [e.g. 3.6, 3.7]
- tensorflow version [e.g. 1.4.0, 1.14.0, 2.3.0]
- deepmatch version [e.g. 0.2.0,]

**Additional context**
Add any other context about the problem here.
2 changes: 1 addition & 1 deletion .github/ISSUE_TEMPLATE/question.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,4 +17,4 @@ Add any other context about the problem here.
**Operating environment(运行环境):**
- python version [e.g. 3.6]
- tensorflow version [e.g. 1.4.0,]
- deepmatch version [e.g. 0.1.1,]
- deepmatch version [e.g. 0.2.0,]
2 changes: 1 addition & 1 deletion .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ jobs:
strategy:
matrix:
python-version: [3.5,3.6,3.7]
tf-version: [1.4.0,1.14.0,2.1.0,2.2.0]
tf-version: [1.4.0,1.14.0,2.1.0,2.2.0,2.3.0]

exclude:
- python-version: 3.7
Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,4 +67,4 @@ Please follow our wechat to join group:
- 公众号:**浅梦的学习笔记**
- wechat ID: **deepctrbot**

![wechat](./docs/pics/weichennote.png)
![wechat](./docs/pics/code.png)
2 changes: 1 addition & 1 deletion deepmatch/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from .utils import check_version

__version__ = '0.1.3'
__version__ = '0.2.0'
check_version(__version__)
15 changes: 9 additions & 6 deletions deepmatch/inputs.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,17 @@
from itertools import chain
from deepctr.inputs import SparseFeat,VarLenSparseFeat,create_embedding_matrix,embedding_lookup,get_dense_input,varlen_embedding_lookup,get_varlen_pooling_list,mergeDict

def input_from_feature_columns(features, feature_columns, l2_reg, init_std, seed, prefix='', seq_mask_zero=True,
support_dense=True, support_group=False,embedding_matrix_dict=None):
from deepctr.feature_column import SparseFeat, VarLenSparseFeat, create_embedding_matrix, embedding_lookup, \
get_dense_input, varlen_embedding_lookup, get_varlen_pooling_list, mergeDict


def input_from_feature_columns(features, feature_columns, l2_reg, seed, prefix='', seq_mask_zero=True,
support_dense=True, support_group=False, embedding_matrix_dict=None):
sparse_feature_columns = list(
filter(lambda x: isinstance(x, SparseFeat), feature_columns)) if feature_columns else []
varlen_sparse_feature_columns = list(
filter(lambda x: isinstance(x, VarLenSparseFeat), feature_columns)) if feature_columns else []
if embedding_matrix_dict is None:
embedding_matrix_dict = create_embedding_matrix(feature_columns, l2_reg, init_std, seed, prefix=prefix,
if embedding_matrix_dict is None:
embedding_matrix_dict = create_embedding_matrix(feature_columns, l2_reg, seed, prefix=prefix,
seq_mask_zero=seq_mask_zero)

group_sparse_embedding_dict = embedding_lookup(embedding_matrix_dict, features, sparse_feature_columns)
Expand All @@ -22,4 +25,4 @@ def input_from_feature_columns(features, feature_columns, l2_reg, init_std, seed
group_embedding_dict = mergeDict(group_sparse_embedding_dict, group_varlen_sparse_embedding_dict)
if not support_group:
group_embedding_dict = list(chain.from_iterable(group_embedding_dict.values()))
return group_embedding_dict, dense_value_list
return group_embedding_dict, dense_value_list
31 changes: 16 additions & 15 deletions deepmatch/layers/__init__.py
Original file line number Diff line number Diff line change
@@ -1,28 +1,29 @@
from deepctr.layers import custom_objects
from deepctr.layers.utils import reduce_sum

from .core import PoolingLayer, Similarity, LabelAwareAttention, CapsuleLayer,SampledSoftmaxLayer,EmbeddingIndex
from ..utils import sampledsoftmaxloss
from .interaction import DotAttention, ConcatAttention, SoftmaxWeightedSum, AttentionSequencePoolingLayer, SelfAttention,\
from .core import PoolingLayer, Similarity, LabelAwareAttention, CapsuleLayer, SampledSoftmaxLayer, EmbeddingIndex
from .interaction import DotAttention, ConcatAttention, SoftmaxWeightedSum, AttentionSequencePoolingLayer, \
SelfAttention, \
SelfMultiHeadAttention, UserAttention
from .sequence import DynamicMultiRNN
from ..utils import sampledsoftmaxloss

_custom_objects = {'PoolingLayer': PoolingLayer,
'Similarity': Similarity,
'LabelAwareAttention': LabelAwareAttention,
'CapsuleLayer': CapsuleLayer,
'reduce_sum':reduce_sum,
'SampledSoftmaxLayer':SampledSoftmaxLayer,
'sampledsoftmaxloss':sampledsoftmaxloss,
'EmbeddingIndex':EmbeddingIndex,
'DotAttention':DotAttention,
'ConcatAttention':ConcatAttention,
'SoftmaxWeightedSum':SoftmaxWeightedSum,
'AttentionSequencePoolingLayer':AttentionSequencePoolingLayer,
'SelfAttention':SelfAttention,
'SelfMultiHeadAttention':SelfMultiHeadAttention,
'UserAttention':UserAttention,
'DynamicMultiRNN':DynamicMultiRNN
'reduce_sum': reduce_sum,
'SampledSoftmaxLayer': SampledSoftmaxLayer,
'sampledsoftmaxloss': sampledsoftmaxloss,
'EmbeddingIndex': EmbeddingIndex,
'DotAttention': DotAttention,
'ConcatAttention': ConcatAttention,
'SoftmaxWeightedSum': SoftmaxWeightedSum,
'AttentionSequencePoolingLayer': AttentionSequencePoolingLayer,
'SelfAttention': SelfAttention,
'SelfMultiHeadAttention': SelfMultiHeadAttention,
'UserAttention': UserAttention,
'DynamicMultiRNN': DynamicMultiRNN
}

custom_objects = dict(custom_objects, **_custom_objects)
17 changes: 9 additions & 8 deletions deepmatch/layers/core.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
import tensorflow as tf
from deepctr.layers.activation import activation_layer
from deepctr.layers.utils import reduce_max, reduce_mean, reduce_sum, concat_func, div, softmax
from tensorflow.python.keras.initializers import RandomNormal, Zeros
from tensorflow.python.keras.initializers import RandomNormal, Zeros, glorot_normal
from tensorflow.python.keras.layers import Layer
from tensorflow.python.keras.regularizers import l2


class PoolingLayer(Layer):
Expand Down Expand Up @@ -216,21 +218,20 @@ def squash(inputs):
return vec_squashed




class EmbeddingIndex(Layer):

def __init__(self, index,**kwargs):
self.index =index
def __init__(self, index, **kwargs):
self.index = index
super(EmbeddingIndex, self).__init__(**kwargs)

def build(self, input_shape):

super(EmbeddingIndex, self).build(
input_shape) # Be sure to call this somewhere!

def call(self, x, **kwargs):
return tf.constant(self.index)
return tf.constant(self.index)

def get_config(self, ):
config = {'index': self.index, }
base_config = super(EmbeddingIndex, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
return dict(list(base_config.items()) + list(config.items()))
14 changes: 7 additions & 7 deletions deepmatch/layers/sequence.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,27 +24,27 @@ def build(self, input_shape):
if self.rnn_type == "LSTM":
try:
single_cell = tf.nn.rnn_cell.BasicLSTMCell(self.num_units, forget_bias=self.forget_bias)
except:
except AttributeError:
single_cell = tf.compat.v1.nn.rnn_cell.BasicLSTMCell(self.num_units, forget_bias=self.forget_bias)
elif self.rnn_type == "GRU":
try:
single_cell = tf.nn.rnn_cell.GRUCell(self.num_units, forget_bias=self.forget_bias)
except:
except AttributeError:
single_cell = tf.compat.v1.nn.rnn_cell.GRUCell(self.num_units, forget_bias=self.forget_bias)
else:
raise ValueError("Unknown unit type %s!" % self.rnn_type)
dropout = self.dropout if tf.keras.backend.learning_phase() == 1 else 0
try:
single_cell = tf.nn.rnn_cell.DropoutWrapper(cell=single_cell, input_keep_prob=(1.0 - dropout))
except:
except AttributeError:
single_cell = tf.compat.v1.nn.rnn_cell.DropoutWrapper(cell=single_cell, input_keep_prob=(1.0 - dropout))
cell_list = []
for i in range(self.num_layers):
residual = (i >= self.num_layers - self.num_residual_layers)
if residual:
try:
single_cell_residual = tf.nn.rnn_cell.ResidualWrapper(single_cell)
except:
except AttributeError:
single_cell_residual = tf.compat.v1.nn.rnn_cell.ResidualWrapper(single_cell)
cell_list.append(single_cell_residual)
else:
Expand All @@ -54,7 +54,7 @@ def build(self, input_shape):
else:
try:
self.final_cell = tf.nn.rnn_cell.MultiRNNCell(cell_list)
except:
except AttributeError:
self.final_cell = tf.compat.v1.nn.rnn_cell.MultiRNNCell(cell_list)
super(DynamicMultiRNN, self).build(input_shape)

Expand All @@ -66,7 +66,7 @@ def call(self, input_list, mask=None, training=None):
rnn_output, hidden_state = tf.nn.dynamic_rnn(self.final_cell, inputs=rnn_input,
sequence_length=tf.squeeze(sequence_length),
dtype=tf.float32, scope=self.name)
except:
except AttributeError:
with tf.name_scope("rnn"), tf.compat.v1.variable_scope("rnn", reuse=tf.compat.v1.AUTO_REUSE):
rnn_output, hidden_state = tf.compat.v1.nn.dynamic_rnn(self.final_cell, inputs=rnn_input,
sequence_length=tf.squeeze(sequence_length),
Expand All @@ -86,6 +86,6 @@ def compute_output_shape(self, input_shape):
def get_config(self, ):
config = {'num_units': self.num_units, 'rnn_type': self.rnn_type, 'return_sequence': self.return_sequence,
'num_layers': self.num_layers,
'num_residual_layers': self.num_residual_layers, 'dropout_rate': self.dropout}
'num_residual_layers': self.num_residual_layers, 'dropout_rate': self.dropout, 'forget_bias':self.forget_bias}
base_config = super(DynamicMultiRNN, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
17 changes: 8 additions & 9 deletions deepmatch/models/dssm.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,8 @@
Huang P S , He X , Gao J , et al. Learning deep structured semantic models for web search using clickthrough data[C]// Acm International Conference on Conference on Information & Knowledge Management. ACM, 2013.
"""

from deepctr.inputs import build_input_features, combined_dnn_input, create_embedding_matrix
from deepctr.layers.core import PredictionLayer, DNN
from deepctr.feature_column import build_input_features, create_embedding_matrix
from deepctr.layers import PredictionLayer, DNN, combined_dnn_input
from tensorflow.python.keras.models import Model

from ..inputs import input_from_feature_columns
Expand All @@ -16,7 +16,7 @@
def DSSM(user_feature_columns, item_feature_columns, user_dnn_hidden_units=(64, 32),
item_dnn_hidden_units=(64, 32),
dnn_activation='tanh', dnn_use_bn=False,
l2_reg_dnn=0, l2_reg_embedding=1e-6, dnn_dropout=0, init_std=0.0001, seed=1024, metric='cos'):
l2_reg_dnn=0, l2_reg_embedding=1e-6, dnn_dropout=0, seed=1024, metric='cos'):
"""Instantiates the Deep Structured Semantic Model architecture.
:param user_feature_columns: An iterable containing user's features used by the model.
Expand All @@ -28,38 +28,37 @@ def DSSM(user_feature_columns, item_feature_columns, user_dnn_hidden_units=(64,
:param l2_reg_dnn: float. L2 regularizer strength applied to DNN
:param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
:param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate.
:param init_std: float,to use as the initialize std of embedding vector
:param seed: integer ,to use as random seed.
:param metric: str, ``"cos"`` for cosine or ``"ip"`` for inner product
:return: A Keras model instance.
"""

embedding_matrix_dict = create_embedding_matrix(user_feature_columns + item_feature_columns, l2_reg_embedding,
init_std, seed,
seed=seed,
seq_mask_zero=True)

user_features = build_input_features(user_feature_columns)
user_inputs_list = list(user_features.values())
user_sparse_embedding_list, user_dense_value_list = input_from_feature_columns(user_features,
user_feature_columns,
l2_reg_embedding, init_std, seed,
l2_reg_embedding, seed=seed,
embedding_matrix_dict=embedding_matrix_dict)
user_dnn_input = combined_dnn_input(user_sparse_embedding_list, user_dense_value_list)

item_features = build_input_features(item_feature_columns)
item_inputs_list = list(item_features.values())
item_sparse_embedding_list, item_dense_value_list = input_from_feature_columns(item_features,
item_feature_columns,
l2_reg_embedding, init_std, seed,
l2_reg_embedding, seed=seed,
embedding_matrix_dict=embedding_matrix_dict)
item_dnn_input = combined_dnn_input(item_sparse_embedding_list, item_dense_value_list)

user_dnn_out = DNN(user_dnn_hidden_units, dnn_activation, l2_reg_dnn, dnn_dropout,
dnn_use_bn, seed, )(user_dnn_input)
dnn_use_bn, seed=seed)(user_dnn_input)

item_dnn_out = DNN(item_dnn_hidden_units, dnn_activation, l2_reg_dnn, dnn_dropout,
dnn_use_bn, seed)(item_dnn_input)
dnn_use_bn, seed=seed)(item_dnn_input)

score = Similarity(type=metric)([user_dnn_out, item_dnn_out])

Expand Down
11 changes: 5 additions & 6 deletions deepmatch/models/fm.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from deepctr.inputs import build_input_features
from deepctr.feature_column import build_input_features
from deepctr.layers.core import PredictionLayer
from deepctr.layers.utils import concat_func, reduce_sum
from tensorflow.python.keras.layers import Lambda
Expand All @@ -8,36 +8,35 @@
from ..layers.core import Similarity


def FM(user_feature_columns, item_feature_columns, l2_reg_embedding=1e-6, init_std=0.0001, seed=1024, metric='cos'):
def FM(user_feature_columns, item_feature_columns, l2_reg_embedding=1e-6, seed=1024, metric='cos'):
"""Instantiates the FM architecture.
:param user_feature_columns: An iterable containing user's features used by the model.
:param item_feature_columns: An iterable containing item's features used by the model.
:param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
:param init_std: float,to use as the initialize std of embedding vector
:param seed: integer ,to use as random seed.
:param metric: str, ``"cos"`` for cosine or ``"ip"`` for inner product
:return: A Keras model instance.
"""

embedding_matrix_dict = create_embedding_matrix(user_feature_columns + item_feature_columns, l2_reg_embedding,
init_std, seed,
seed=seed,
seq_mask_zero=True)

user_features = build_input_features(user_feature_columns)
user_inputs_list = list(user_features.values())
user_sparse_embedding_list, user_dense_value_list = input_from_feature_columns(user_features,
user_feature_columns,
l2_reg_embedding, init_std, seed,
l2_reg_embedding, seed=seed,
support_dense=False,
embedding_matrix_dict=embedding_matrix_dict)

item_features = build_input_features(item_feature_columns)
item_inputs_list = list(item_features.values())
item_sparse_embedding_list, item_dense_value_list = input_from_feature_columns(item_features,
item_feature_columns,
l2_reg_embedding, init_std, seed,
l2_reg_embedding, seed=seed,
support_dense=False,
embedding_matrix_dict=embedding_matrix_dict)

Expand Down
Loading

0 comments on commit f9f5bb7

Please sign in to comment.